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ARTICLE INFO                                       ABSTRACT 
 
 
 

The parameter estimation method that based on the minimum residual sum of squares is 
unsatisfactory in the presence of multicollinearity. In (1970) Hoerl and Kennard introduced an 
alternative estimation approach which is called the ridge regression (RR) estimator. In RR 
approach, ridge parameter plays an important role in the parameter estimation. Many researchers 
are suggested various methods for determining the ridge parameter for the RR approach and they 
generalized their methods to be applicable for the logistic ridge regression (LRR) model. 
Schaeffer et al. (1984) was the first who proposed a LRR estimator. In this article, new methods 
for choosing the ridge parameter for logistic regression (LR) are proposed. The performance of 
the proposed methods are evaluated and compared with other models that having different 
previously suggested ridge parameter through a simulation study in terms of mean square error 
(MSE). The developed technique in this communication seems to be very reasonable because of 
having smaller MSE. The results from the simulation study generally show that all the LRR 
estimators have a lower MSE than the maximum likelihood (ML) estimator and our suggested 
LRR estimators were superior in most of the cases. 
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INTRODUCATION 
 
The concept of multicollinearity was first introduced by Frisch (1934), which occurs when the independent variables in a multiple 
regression model are collinear. This problem, which is very common in applied researches, causes high variance and instable 
parameter estimates when estimating both linear regression models using ordinary least squares(OLS) technique and the LR 
model using the maximum likelihood estimation (MLE) method. There are several ways to solve this problem. One popular way 
to deal with this problem is called the ridge regression that first proposed by Hoerl and Kennard (1970). The RR is known as an 
efficient remedial measure for the linear regression model and the LR model. A lot of researches mainly focused on different ways 
of estimating the ridge parameter. The authors proved that there is a non-zero value of such ridge parameter for which the MSE 
for the coefficients β using the RR is smaller than the MSE of the OLS estimator or the ML estimator of the respective parameter.  
 

Many authors have worked with this area of research and developed and proposed different estimators for the RR parameter. To 
mention a few, Hoerl and Kennard (1970a), Hoerl et al. (1975), McDonald and Galarneau (1975), Lawless and Wang (1976), 
Schaeffer et al. (1984), Khalaf and Shukur (2005), Alkhamisi et al. (2006) and Muniz and Kibria (2009).  The main goal of this 
paper is to suggest some new methods for choosing the ridge parameter k for LR. The performance of these proposed methods is 
evaluated by comparing them with other previously suggested models that having different ridge parameter based on a simulation 
study in terms of MSE. Very promising results for our suggested methods are shown. 
 

MATERIALS AND METHODS 
 

In this section we propose some LRR estimators for estimating the ridge parameter k based on the work of Hoerl, Kennard and 
Baldwin in (1975), Schaefer et al. in (1948) and Dorugade in (2010). 
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Model and estimation 
 
Logistic regression is a widely used statistical method, the ith value of the vector of the response variable ��×� of the regression 
model is Bernoulli distributed with the following parameter value: 

π�(x�) =
e��

′β

1 + e��
′β

 (1) 

Where x� = [1, x��, x��, x��, … x��]
′is the ith row of data matrix X�×(���) which is a vector of p independent variables and 

constant,	β = (β
�
, β
�
β
�
… , β

�
)′ is (p+1)×1vector of the coefficients (unknown parameters), n is the sample size. 

 
The most common method of estimating β is to apply the maximum likelihood estimation (MLE) approach, the ML estimator of β 
is given by: 

β�
���
= [X′WX]��X′W	Z, (2) 

where W	is	a	square	matrix	of	order	n	with	element π�(1 − π�),Z is an n×1 column vector with the ith elements: z� =

logit[π��(x�)] +
���π��

π��(��π��)
. The asymptotic covariance matrix of the ML estimator equals: 

Var�β�
���
� = cov�β�

���
� = (X′WX)�� 

 

                                                          = {X′diag	[π��(1 − π��)]	X}
�� 

(3) 

The MSE of the asymptotically unbiased β�
���

 is: 

��� = ������� − ��
′
������ − ��  

          = �������������� = ∑
�

��

�
���  (4) 

Where	λ� is the jth eigen value of the X'WX matrix. One of the drawbacks of using the MLE approach is that the MSE of the 

estimator becomes inflated when the independent variables are highly correlated because some of the eigen values will be small. 
As a remedy to this problem, caused by the multicollinearity, Schaefer et al. (1984) proposed the following LRR estimator. 

��� = (�
′�� + ���)

���′��β�
���

 (5) 
 
The MSE of the LRR estimator equals: 

��� = ����� − ������ − ��
′
  

                                                          = ∑
λ�

(λ���)
�

�
��� + k� ∑

β�
�

(λ���)
�

�
���  (6) 

 

There are several researcher mainly focused on different ways of estimating the ridge parameter k [1][13]. 
 
The ridge parameter 
 
Estimating the value of the ridge parameter k is an important problem in the RR method. Many different techniques for estimating 
k have been proposed by various researchers. The RR estimator does not provide a unique solution to the problem of  
multicollinearity but provides a family of solutions, because there is no specific rule for how to choose the ridge parameter.  
 
These solutions depend on the value of K which is the diagonal matrix of the non-negative constants kj. A useful procedure uses   
K = kI, k>0. However, several methods have been proposed for the linear RR model, and these methods have been generalized to 
be applicable for the LRR model. The most classical RR parameters are summarized in Table (1). 
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Table 1. Some common RR parameters 
 

Author Ridge parameter 

Proposed  by [Hoerl and Kennard (1970)] 
k� =

σ��

β��
�
						j = 1,2,…p 

Proposed by [Hoerl and Kennard (1970)] k�� =
���

������
,  

Suggested by [ Hoerl, Kennard and Baldwin (1975)]  
k��� =

pσ��

β��β�
=
pσ��

∑ ��
��

���

 

Proposed by [Schaefer et al. (1984)] 
k��� =

1

β��
���

 

Suggested  by [Khalaf and Shukur (2005)] 
k�� =

σ��λ���

(n − p − 1)σ�� + λ���β�
�
���

 

Suggested  by [Dorugade and Kashid (2010)] 
k� = max	 �	0	,

pσ��

α��α�
−

1

n�VIF�����

� 

 

where σ��  is the residual variance of the raw residuals divided by the degrees of freedoms  (n − p −1), λ��� is the largest 

eigenvalue of the matrix X′X  and VIF� =
�

����
�	is the variance inflation factor of the jth  regressor. 

 
New proposed ridge parameter 
  
In this section, three different methods of specifying the ridge parameter k will be proposed. Those three methods are considered 
to be a modification of three others ridge parameters proposed elsewhere. Our main goal is to give three new estimators with 
smaller MSE value compared with other previously suggested ridge estimators. The first new proposed ridge parameter, k���, and 
hence its estimator is a modification of the estimator which is proposed by Dorugade (2010). The mathematical formula of k��� is 
as follows: 

k��� = max	 �	0	,
�σ��

β��
′
β��
− �

�

����������

�
�

�, (7) 

where β� is the ML estimator of β. By squaring the term �
�

����������

�, the value of  ridge parameter will be increased, and as a 

consequence the bias of the proposed estimator will be also increased, and this will reduce the MSE of the corresponding ridge 
estimator. 
 
The second and the third modified ridge parameters are given by the following formulas:  

k��� =
pσ��

β��
′
β��
∗ �

n

p�VIF�����

�

�

�

 (8) 

k��� =
1

β�
�

���

∗ 	 �
n

p�VIF�����

�

�

�

 (9) 

The k��� ridge parameter is an enhancement of the ridge parameter which is given by Hoerl, Kennard and Baldwin (1975). While 
k��� is a modification of the ridge parameter which is suggested by Schaefer et al. (1948). Our goal is to multiply those two 

previously suggested ridge parameters by the term �
�

����������

�

�

�
, which is often greater than one. So the value of the bias of the 

two new suggested estimators will be increased, and this will give an opportunity for a large reduction of the MSE criterion of the 
two new suggested ridge estimators. 
 
Simulation study 
 
In this section, the performance of the three suggested ridge estimators is evaluated over several different ridge estimators. Since a 
theoretical comparison is not possible, a simulation study is conducted in this section. The design of a good simulation study is 
depended on:  
 
(i) What factors are expected to affect the properties of the estimators under investigation, and 
(ii) what criteria are being used to judge the results. 
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Factors affecting the properties of estimators 
 
In this section, a brief description of the selected factors that is used in the simulation study with different values will be 
presented. 
 
a) The strength of correlation among the predictor variables (��) 
 
The most obvious factor that affects the properties of the different estimators is the degree of correlation between the independent 
variables. The four different degrees of correlation that are used in this simulation study are:  
	ρ� = 0.70, 0.80, 0.90	and	0.95. 
 
b) The number of independent variables (P) 
 
Another factor that has an obvious effect on the evaluation of the estimators is the number of independent variables. The main 
interest of varying this factor is to see which ridge parameter is the best for specific number of independent variables. In most 
simulation studies the proposed ridge estimator is calculated using a fairly low number of predictor variables (2 and 4 is the most 
common selected value of p) (Mansson et al., 2010). Hence, there is a need to conduct an investigation where more variables are 
considered to see the effect of increasing the number of independent variables on the performance of the ridge estimators. The 
number of independent variables that is used in the simulated models is equal to 2, 3, 4, 5,10. 
 
c) The sample size (n) 
 
Another consideration that is taken into account is the sample size n. Actually, when comparing different estimation methods, 
increasing the n is supposed to have a positive effect on the MSE, as increasing the n leads to a lower variance of the estimated 
parameters. Therefore, it is interesting to investigate the gain of using LRR when n is both small and large. The sample size is 
increased with the number of independent variables (p). Many papers show that to obtain meaningful results from the LR model, 
the sample size is needed to be adjusted. Therefore, the number of observations that are used in this simulation study is depend on 
20p+10, 30p, 40p, 60p, and 100p, respectively (Mansson and Shukur, 2011 and Peruzzi, 1996). 
 
Criteria for measuring the goodness of an estimator 
 
The MSE is used as a criterion to measure the goodness of the estimator. It is used to compare the new three proposed ridge 
estimators with other four previously suggested ridge estimators together with the ML estimator. For a given values of p, n, and ρ� 
the set of predictor variables are generated. Then the experiment was repeated 1,000 times by generating new error terms. After 
that the values of the ML estimator, also the previously suggested and the modified ridge parameters k and their corresponding 
ridge estimators as well as the average MSE (AMSEs) are evaluated for each estimator. 
 
Generation of independent and dependent variables 
 
Following Gibbons (1981), and to achieve different degrees of collinearity, the predictor variables are generated using the 
following equation: 

x�� = (1 − ρ�)�
�

�
�z�� + ρz��, where	 (10) 

i = 1,2, … , n	, j = 1,2, … , p, ρ� represents the correlation between any two predictor variables and z��are independent standard 

normal pseudo-random numbers. The n observations for the dependent variable are obtained from the Bernoulli (π�) distribution in 
Equation (1). The values of the parameters ��, ��, ��, … , ��are chosen so that	�� = �� = ⋯ = �� and ∑ ��

�
��� = 1, which is 

common restrictions in many simulation studies; (Kibria et al., 2012). The value of the intercept is another important factor since 
it equals the average value of the log odds ratio. Hence, when the intercept equals zero then there is an equal average probability 
of obtaining one and zero. While, when the intercept is positive then the average value of the log odds ratio is positive which 
means that there is a greater probability of obtaining one than zero. Finally, when the value of the intercept is negative the 
opposite situation occurs which means that there is a greater probability of obtaining zero than one. Accordingly, the value of the 
intercept in the simulation study is chosen to be zero (Mansson and Shukur, 2011).  
 

RESULTS AND DISCUSSION 
 
In this section, The main results of the Monte Carlo simulation concerning the properties of the estimation method for choosing 
the ridge parameter have been presented. The results of the simulated AMSEs are summarized in Tables [2 - 6] and Figures                   
[1 - 10]. Those Tables and Figures show the effects of changing the sample sizes and the correlation coefficient values between 
the independent variables on the performance of ML and different ridge estimators.  
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Table 2. The AMSE of the ML and different ridge estimators, for  p=2 and different correlation and sample size 
 

���� ���� ���� �� ���� ���� ��� MLE N �� 

0.5361 0.5642 0.66911 0.6733 0.53406 0.66908 0.7133 0.8181 

50 

0.7 
0.6650 0.7756 0.9189 0.9248 0.6970 0.9188 1.0039 1.2106 0.80 
1.0513 1.4031 1.5835 1.5942 1.1182 1.5835 1.8110 2.4223 0.90 
1.8408 2.7045 2.7706 2.7898 1.8680 2.7705 3.2621 4.9138 0.95 
0.4617 0.4656 0.5543 0.5566 0.4462 0.5543 0.5856 0.6619 

60 

0.7 
0.5712 0.6395 0.7661 0.7694 0.5854 0.7661 0.8291 0.9819 0.80 
0.8808 1.1467 1.3247 1.3305 0.9386 1.3246 1.4983 1.9635 0.90 
1.4877 2.1565 2.2783 2.2886 1.5345 2.2783 2.6887 3.9671 0.95 
0.3687 0.3374 0.4014 0.4022 0.3321 0.4014 0.4195 0.4648 

80 

0.7 
0.4499 0.4622 0.5603 0.5615 0.4399 0.5603 0.5980 0.6921 0.80 
0.6601 0.8084 0.9717 0.9738 0.6997 0.9717 1.0880 1.3863 0.90 
1.0870 1.5109 1.6829 1.6867 1.1460 1.6829 1.9672 2.8220 0.95 
0.2776 0.2251 0.2629 0.2631 0.2259 0.2629 0.2712 0.2925 

120 

0.7 
0.3379 0.3098 0.3736 0.3739 0.3061 0.3736 0.3922 0.4369 0.80 
0.4888 0.5378 0.6627 0.6633 0.4985 0.6627 0.7257 0.8767 0.90 
0.7558 0.9733 1.1505 1.1516 0.8061 1.1505 1.3215 1.7867 0.95 
0.2032 0.1402 0.1584 0.1584 0.1419 0.1584 0.1613 0.1695 

200 

0.7 
0.2447 0.1930 0.2275 0.2276 0.1951 0.2275 0.2344 0.2526 0.80 
0.3433 0.3354 0.4172 0.4174 0.3282 0.4172 0.4439 0.5086 0.90 
0.5045 0.5888 0.7359 0.7361 0.5318 0.7359 0.8213 1.0359 0.95 

 
 

Table 3. The AMSE of the ML and different ridge estimators, for p=3 and different correlation and sample size 
 

���� ���� ���� �� ���� ���� ��� MLE N �� 

0.6683 0.8293 0.9006 0.9025 0.7162 0.9006 0.9862 1.1095 70 0.7 
0.9461 1.2257 1.3073 1.3102 1.0024 1.3073 1.4736 1.7151 0.80 
1.7635 2.4193 2.4511 2.4564 1.7856 2.4511 2.8829 3.5942 0.90 
3.4348 4.8412 4.5896 4.5995 3.2725 4.5896 5.5414 7.4426 0.95 
0.5159 0.6191 0.6779 0.6787 0.5501 0.6779 0.7342 0.8163 90 0.7 
0.7201 0.9112 0.9866 0.9878 0.7674 0.9866 1.0994 1.2672  0.80 
1.3239 1.7810 1.8448 1.8470 1.3644 1.8448 2.1570 2.6577  0.90 
2.5660 3.5693 3.4649 3.4689 2.5019 3.4649 4.1948 5.5317 0.95 
0.3936 0.4587 0.5043 0.5047 0.4176 0.5043 0.5381 0.5873 120 0.7 
0.5476 0.6752 0.7392 0.7397 0.5873 0.7392 0.8105 0.9109 0.80 
0.9798 1.3012 1.3799 1.3807 1.0285 1.3799 1.5893 1.9105  0.90 
1.8315 2.5448 2.5431 2.5447 1.8301 2.5431 3.0618 3.9704  0.95 
0.2766 0.3048 0.3345 0.3346 0.2863 0.3345 0.3499 0.3743 180 0.7 
0.3797 0.4473 0.4934 0.4936 0.4044 0.4934 0.5281 0.5796  0.80 
0.6638 0.8539 0.9293 0.9295 0.7108 0.9293 1.0450 1.2155 0.90 
1.2074 1.6468 1.7111 1.7115 1.2469 1.7111 2.0292 2.5322 0.95 
0.1818 0.1859 0.2019 0.2019 0.1798 0.2019 0.2075 0.2175 300 0.7 
0.2493 0.2735 0.3010 0.3010 0.2573 0.3010 0.3147 0.3366  0.80 
0.4286 0.5210 0.5774 0.5775 0.4600 0.5774 0.6299 0.7057  0.90 
0.7534 0.9853 1.0662 1.0663 0.8016 1.0666 1.2285 1.4681]  0.95 

 
 

Table 4. The AMSE of the ML and different ridge estimators, for p=4 and different correlation and sample size 
 

���� ���� ���� �� ���� ���� ��� MLE N �� 

0.8240 1.0217 1.0668 1.0672 0.8625 1.0662 1.1856 1.3154  90 0.7 
1.2199 1.5556 1.5951 1.5967 1.2526 1.5951 1.8253 2.0812  0.80 
2.3897 3.1544 3.1023 3.1053 2.3505 3.1023 3.6987 4.4369  0.90 
4.8582 6.5239 6.1193 6.1253 4.5684 6.1193 7.4423 9.3517 0.95 
0.6012 0.7356 0.7743 0.7747 0.6352 0.7743 0.8485 0.9293 120 0.7 
0.8728 1.1069 1.1506 1.1512 0.9103 1.1506 1.3010 1.4643  0.80 
1.6858 2.2184 2.2224 2.2235 1.6894 2.2224 2.6393 3.1266  0.90 
3.3379 4.4993 4.2960 4.2982 3.1915 4.2960 5.2548 6.5701  0.95 
0.4567 0.5460 0.5769 0.5771 0.4839 0.5769 0.6215 0.6704  160 0.7 
0.6594 0.8196 0.8600 0.8602 0.6942 0.8600 0.9536 1.0555  0.80 
1.2470 1.6241 1.6551 1.6556 1.2715 1.6551 1.9320 2.2559  0.90 
2.4190 3.2339 3.1498 3.1507 2.3590 3.1498 3.8324 4.7336  0.95 
0.3131 0.3613 0.3825 0.3825 0.3298 0.3825 0.4040 0.4294 240 0.7 
0.4492 0.5419 0.5736 0.5737 0.4748 0.5736 0.6216 0.6763  0.80 
0.8348 1.0649 1.1079 1.1080 0.8691 1.1079 1.2695 1.445  0.90 
1.5685 2.0769 2.0796 2.0798 1.5707 2.0796 2.5078 3.0323  0.95 
0.1978 0.2187 0.2306 0.2306 0.2051 0.2306 0.2387 0.2495 400 0.7 
0.2844 0.3295 0.3495 0.3495 0.2994 0.3495 0.3692 0.3930 0.80 
0.5210 0.6457 0.6831 0.6831 0.5498 0.6831 0.7559 0.8388 0.90 
0.9669 1.2501 1.2902 1.2903 0.9962 1.2902 1.5117 1.7644 0.95 
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Table 5. The AMSE of the ML and different ridge estimators, for p=5 and different correlation and sample size 
 

���� ���� ���� �� ���� ���� ��� MLE N �� 

0.9287 1.1451 1.1736 1.1742 0.9564 1.1736 1.3227 1.4588 110 0.7 
1.3940 1.7624 1.7771 1.7781 1.4075 1.7771 2.0606 2.3299  0.80 
2.8094 3.6349 3.5383 3.5402 2.7321 3.5383 4.2767 5.0403  0.90 
5.7297 7.4950 7.0239 7.0277 5.3775   7.0239 8.6723 10.6464 0.95 
0.6720 0.8130 0.8395 0.8398 0.6981 0.8395 0.9274 1.0081 150 0.7 
0.9965 1.2398 1.2652 1.2655 1.0200 1.2652 1.4421 1.6055 0.80 
1.9564 2.5080 2.4812 2.4818 1.9340 2.4812 2.9697 3.4581  0.90 
3.9057 5.1057 4.8627 4.8639 3.7198 4.8627 5.9994 7.3200  0.95 
0.5102 0.6094 0.6319 0.6320 0.5327 0.6319 0.6861 0.7365  200 0.7 
0.7524 0.9293 0.9559 0.9561 0.7777 0.9559 1.0694 1.1745  0.80 
1.4670 1.8731 1.8773 1.8776 1.4710 1.8773 2.2140 2.5362  0.90 
2.8930 3.7776 3.6522 3.6527 2.7984 3.6522 4.4652 5.3682  0.95 
0.3439 0.4019 0.4180 0.4180 0.3598 0.4180 0.4445 0.4713  300 0.7 
0.5057 0.6122 0.6350 0.6350 0.5273 0.6350 0.6943 0.7515  0.80 
0.9696 1.2230 1.2463 1.2464 0.9894 1.2463 1.4385 1.6239  0.90 
1.8892 2.4330 2.4019 2.4021 1.8656 2.4019 2.9092 3.4379 0.95 
0.2170 0.2449 0.2542 0.2542 0.2259 0.2542 0.2644 0.2758  500 0.7 
0.3178 0.3731 0.3884 0.3884 0.3328 0.3884 0.4133 0.4384  0.80 
0.5959 0.7382 0.7641 0.7641 0.6188 0.7641 0.8560 0.9448  0.90 
1.1295 1.4432 1.4597 1.4597 1.1425 1.4597 1.7278 1.9990  0.95 

 
Table 6. The AMSE of the ML and different ridge estimators, for p=10 and different correlation and sample size 

 
���� ���� ���� �� ���� ���� ��� MLE N �� 

1.3960 1.6555 1.6529 1.6531 1.3933 1.6529 1.8974 2.0428 210 0.7 
2.1994 2.6382 2.6098 2.6100 2.1720 2.6098 3.0749 3.3623 0.80 
4.6534 5.6212 5.4687 5.4692 4.5201 5.4687 6.6820 7.4938  0.90 
9.7128 11.7697 11.2645 11.2656 9.3006 11.2645 14.0717 16.1358  0.95 

0.94091 1.1087 1.1131 1.1131 0.9457 1.1131 1.2554 1.3410  300 0.7 
1.4632 1.7428 1.7356 1.7356 1.4561 1.7356 2.0215 2.1956  0.80 
3.0317 3.6473 3.5743 3.5744 2.9680 3.5743 4.3506 4.8666  0.90 
6.2332 7.5294 7.2557 7.2560 6.0123 7.2557 9.0865 10.4399 0.95 
0.6988 0.8199 0.8258 0.8258 0.7059 0.8258 0.9174 0.9733 400 0.7 
1.0772 1.2839 1.2849 1.2849 1.0782 1.2849 1.4744 1.5917  0.80 
2.2171 2.6673 2.6297 2.6298 2.1842 2.6297 3.1717 3.5286  0.90 
4.5264 5.4662 5.3002 5.3003 4.3918 5.3002 6.6173 7.5740  0.95 
0.4621 0.5400 0.5461 0.5461 0.4695 0.5461 0.5934 0.6248  600 0.7 
0.7061 0.8427 0.8485 0.8485 0.7122 0.8485 0.9543 1.0220  0.80 
1.4328 1.7343 1.7238 1.7238 1.4233 1.7238 2.0493 2.2629  0.90 
2.8910 3.5087 3.4317 3.4318 2.8279 3.4317 4.2590 4.8502 0.95 
0.2890 0.3297 0.3339 0.3339 0.2945 0.3339 0.3530 0.3667 1000 0.7 
0.4414 0.5161 0.5219 0.5219 0.4482 0.5219 0.5683 0.5988 0.80 
0.8730 1.0518 1.0551 1.0551 0.8761 1.0551 1.2182 1.3243  0.90 
1.7394 2.1055 2.0828 2.0828 1.7203 2.0828 2.5332 2.8409  0.95 

 

 
 
 

ρ=0.7                                                                                                          ρ=0.8 
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ρ=0.9                                                                                                     ρ=0.95 

 
Figure 1. The AMSE of the ML and different ridge estimators, for p=2, ρ=0.70, 0.80, 0.90 and 0.95 with different sample size 

 
   n=50                                                                                                n=80 

 
     n=120                                                                                             n=200 

 
Figure 2. The AMSE of the ML and different ridge estimators, for p=2, n=50, 80, 120 and 200with different correlation 
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      ρ=0.7                                                                                      ρ=0.8 

 
      ρ=0.9                                                                                      ρ=0.95 

 

Figure 3. The AMSE of the ML and different ridge estimators, for p=3, ρ=0.70, 0.80, 0.90 and 0.95 with different sample size 
 

 
       n=70                                                                                               n=120 
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      n=180                                                                                               n=300 

 
Figure 4. The AMSE of the ML and different ridge estimators, for p=3, n=70, 120, 180 and 300 with different correlation 

 

 
    ρ=0.7                                                                                                ρ=0.8 

 
      ρ=0.9                                                                                                ρ=0.95 

 
Figure 5. The AMSE of the ML and different ridge estimators, for p=4, ρ=0.70, 0.80, 0.90 and 0.95 with different sample size 
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       n=90                                                                                               n=160 

 
       n=240                                                                                              n=400 

 
Figure 6. The AMSE of the ML and different ridge estimators, for p=4, n=90, 160, 240 and 400 with different correlation 

 

 
     ρ=0.7                                                                                                 ρ=0.8 
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      ρ=0.9                                                                                                 ρ=0.95 

 
Figure 7. The AMSE of the ML and different ridge estimators, for p=5, ρ=0.70, 0.80, 0.90 and 0.95 with different sample size 

 
   N=110                                                                                               N=200 

 
      N=300                                                                                               N=500 

 

Figure 8. The AMSE of the ML and different ridge estimator, for p=5, n=110, 200, 300 and 500 with different correlation 
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    ρ=0.7                                                                                               ρ=0.8 

 
      ρ=0.9                                                                                                ρ=0.95 

 
Figure 9. The AMSE of the ML and different ridge estimators, for p=10, ρ=0.70, 0.80, 0.90 and 0.95 with different sample size 

 

 
        n=210                                                                                    n=400 
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        n=600                                                                                            n=1000 

 
Figure 10. The AMSE of the ML and different ridge estimators, for p=10,  n=210, 400, 600 and 1000 with different correlation 

 
According to our simulation study many conclusion can be drawn on the performance of the ML and different ridge modified and 
previously suggested estimators, these conclusion, can be summarized as follows: 
 
1. Almost all the cases indicates that the ML estimator performs worse than the modified and previously suggested ridge 

estimators except when (n=200 and ρ=0.7) the performance of estimator based on ���� was not good. 
2. Our first modified ridge estimator based on ���� perform better than �� estimator in all cases. 
3. The second suggested ridge estimator based on ���� as a modification of ���� is also performs better than estimator based on 
����  in most cases. 

4. Also ���� gives much better prediction results comparable with the ML estimator and the other modified and previously 
suggested estimators, this estimator seems to be superior at most of the cases. 

5. The estimator based on ����is better than the estimator based on ����when the correlation is not too high , but with the strong 
correlation the estimator based on ����becomesbetter than the estimator based on ����. with increasing the sample size, the 
estimators based on ����, ����are approaching to each other and the difference between them becomes small. The generally, 
estimator based on ���� is best in most cases. 

6. The ridge estimators that based on the parameters ����	and	����, have approximately the same results in most of the cases. 
The reason behind that is the ����is a modification of the �� parameter which, in the origin, is a modification of the ���� 

parameter. More specifically, when squaring the term �
�

����������

�, that is included in ���� its value approaches to zero  and 

the value of ���� and the value  of ���� become the same. 
 
CONCLUSION 
 
The performance of the three new proposed ridge estimators based on ����, ����	and	���� are shown to be better than the ML 
estimator in most of the cases. Our three suggested modifications give better prediction results than the previously suggested ridge 
estimators in most of the cases. Our third suggested ridge estimator that based on the ridge estimator which is proposed by 
Schaefer et al. (1984) looks superior to all the studied ML and ridge estimators as it has smaller AMSE in most of the cases. 
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