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ARTICLE INFO  ABSTRACT 
 

Speech recognition is an option of accessibility in electronic devices. Currently, this recognition is 
accomplished through Application Programming Interfaces that depend on Internet connection 
and which are often made available by proprietary software. Voice recognition is an important 
technology for improving HCI (Human-Computer Interaction), after all speech is a human feature 
that most people have. The increased use of adaptive interfaces using speech recognition results 
from the fact that speech is the most natural form of interaction. Speech makes it faster to access 
information in software and applications, compared to standard interaction forms such as 
touchscreen, mouse, keyboard, among others. Considering this context, this work presents an 
open-source solution for continuous speech recognition in mobile devices. At first, a tool 
comparing the processing and memory usage of library configurations on a desktop computer was 
developed. Then, we implemented the best alternatives in an Android application and tested its 
performance and battery usage on several mobile devices. For this, the best libraries were 
selected, and their configuration files were optimized to find the most cost-effective solution 
between performance and accuracy of the Word Error Rate (WER) and Sentence Error Rate 
(SER) rates. 
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INTRODUCTION 
 
Since the emergence of computers, researchers have been looking for 
ways to make computer systems smarter. One of these forms is the 
understanding of speech, which aims to make machines capable of 
understanding and communicating in natural language. To understand 
speech computationally, it is necessary to convert spoken language 
into text; this process is called speech recognition (Soni, 2019; 
Jurafsky and Martin, 2008). The increased use of adaptive interfaces 
using speech recognition results from the fact that speech is the most 
natural form of interaction. Speech makes it faster to access 
information in software and applications, compared to standard 
interaction forms such as touchscreen, mouse, keyboard, among 
others (Hearst, 2011). Voice recognition is an important technology 
for improving HCI (Human-Computer Interaction), after all speech is 
a human feature that most people have. Advances in speech 
recognition techniques have enabled the use of this technology in 
many applications, including mobile devices. While many tasks are 
best addressed with visual interfaces (keyboard, mouse, and so on), 
voice has the potential to be a more natural interface. It can provide 
interaction even if the user is busy with his hands and eyes or haves 
limited abilities.  

 
 
These are advantageous regardless of the type of user, except for 
people with aphonia or dysphonia (NationalAcademies of Sciences, 
Engineering, and Medicine, 2017; Yu and Deng, 2015). Speech 
recognition can be classified into two types: (i) Isolated words, which 
require sentences to be pronounced with pauses between each word, 
useful in simple systems and with small vocabulary, such as, 
command and control systems by voice; and (ii) Continuous, focusing 
at making communication more effective for humans, since they 
recognize sentences pronounced in a natural way, that is, without the 
need for pauses between words (Huang and Deng, 2010). Our 
approach works with continuous type recognition. This mode of 
speech recognition is more complex when compared to the 
recognition of isolated words, since it’s able to handle all the 
characteristics and vices of speech. Moreover, in this type, there is no 
information on where certain words or phonemes begin and end. 
Consequently, many words can be replaced or unidentified (Jurafsky 
and Martin, 2008). Currently, Web Speech, Java Speech, Google 
Cloud Speech and Bing Speech APIs facilitate the implementation of 
continuous voice recognition of Brazilian Portuguese in software and 
applications. However, these APIs cannot be used in all application 
types of application because they need an internet connection. In 
addition, they are proprietary software, can cash in on access, and 
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generate cost for those who use it on a large scale (
Tevah, 2006; Debatin et al., 2018). Although it characterizes an old 
approach, since society is currently in the cloud computing age, the 
offline technique has some advantages: (i) it does not suffer from 
problems related to latency and bandwidth, since they do not need 
servers in the cloud or remote; (ii) do not have server
issues, since cloud services serve multiple clients, and 
present security, compliance, and regulatory issues (
In order to implement speech recognition, it is necessary to k
some of its fundamental properties, such as: (i)
voice signal, which are the various information about the speaker 
present in the audio signal; (ii) the forms for extracting and decoding 
audio characteristics, used to generate the best textual sequence from 
the input audio signal; and (iii) the evaluation metrics, which are used 
to measure speech recognition performance (Ferreira and Souza, 
2017). To enable recognition in offline mode, it is necessary to 
perform voice recognition processing on the mobile device itself. 
Voice recognition has a high computational complexity and requires a 
lot of memory, and this is a constraint, since many smartphones an
tablets have limited hardware resources (Georgescu 
Gupta and Owens, 2011). This work presents a solution for off
continuous speech recognition. After a systematic review of the 
literature, the libraries CMUSphinx, Hidden Markov Models 
(HTK) and Kaldi were selected and analyzed. Each library has 
specific configuration files that were edited to find the most cost
effective configuration of Word Error Rate (WER) and 
Rate (SER) performance and accuracy. A tool was dev
analyze the procedures, comparing the processing and memory usage 
of the library settings on a desktop computer. The better evaluated 
library and configuration were selected and implemented in an 
Android application, that was evaluated for the sa
and battery usage. 
 

MATERIALS AND METHODS
 
This section presents the fundamentals that guided this investigation 
along with technical references adopt to implement the solution.

 
BACKGROUND 

 
The basis for discussing speech recognition, involving the concepts, 
the libraries, and the speech corpus considered in this work are 
presented in this subsection. 

 
Speech Recognition: Speech recognition is the process of converting 
the analog speech signal into its textual representation. In this wa
the generated text is composed of the sequence of words that have 
been identified from the input signal. Speech recognition is a research 
area that has been active for over five decades. In the old days, the 
speech was little used in the HCI, since it d
efficiency and precision of the keyboard and the mouse. This is due to 
the fact that the technology of the time was not advanced enough. 
However, in recent years the computational power has increased, 
allowing the training of larger and more complex models, thus 
reducing WER (Yu and Deng, 2015).  

 
Speech recognition simulates the human hearing system, and its 
performance is influenced by the characteristics that affect the speech 
signal, such as the vocabulary used, characteristics of the
and background noises (Meyer et al., 2014). 

 
The basic structure of speech recognition systems, shown in Fig. 
1, is divided into two steps: 

 
 Features Extraction: Applies algorithms to the speech signal 

of the input in order to represent it in a m
robust way. For this, it is necessary to convert the analog 
signal into a digital representation and determine what is 
silence/noise and to extract in fact the useful voice 
information. With the elimination of noise, the amount of 
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generate cost for those who use it on a large scale (Neto et al., 2011; 
Although it characterizes an old 

approach, since society is currently in the cloud computing age, the 
it does not suffer from 

problems related to latency and bandwidth, since they do not need 
do not have server-side sharing 

issues, since cloud services serve multiple clients, and (iii) do not 
present security, compliance, and regulatory issues (Grossman, 2009). 
In order to implement speech recognition, it is necessary to know 

(i) the features of the 
voice signal, which are the various information about the speaker 

the forms for extracting and decoding 
audio characteristics, used to generate the best textual sequence from 

the evaluation metrics, which are used 
Ferreira and Souza, 

enable recognition in offline mode, it is necessary to 
perform voice recognition processing on the mobile device itself. 
Voice recognition has a high computational complexity and requires a 
lot of memory, and this is a constraint, since many smartphones and 

(Georgescu et al., 2021; 
This work presents a solution for off-line 

continuous speech recognition. After a systematic review of the 
literature, the libraries CMUSphinx, Hidden Markov Models Toolkit 
(HTK) and Kaldi were selected and analyzed. Each library has 
specific configuration files that were edited to find the most cost-

(WER) and Sentence Error 
SER) performance and accuracy. A tool was developed to 

analyze the procedures, comparing the processing and memory usage 
of the library settings on a desktop computer. The better evaluated 
library and configuration were selected and implemented in an 
Android application, that was evaluated for the sake of performance 

MATERIALS AND METHODS 

This section presents the fundamentals that guided this investigation 
along with technical references adopt to implement the solution. 

involving the concepts, 
the libraries, and the speech corpus considered in this work are 

Speech recognition is the process of converting 
the analog speech signal into its textual representation. In this way, 
the generated text is composed of the sequence of words that have 

Speech recognition is a research 
area that has been active for over five decades. In the old days, the 
speech was little used in the HCI, since it did not surpass the 
efficiency and precision of the keyboard and the mouse. This is due to 
the fact that the technology of the time was not advanced enough. 
However, in recent years the computational power has increased, 

more complex models, thus 

Speech recognition simulates the human hearing system, and its 
performance is influenced by the characteristics that affect the speech 
signal, such as the vocabulary used, characteristics of the speakers 

The basic structure of speech recognition systems, shown in Fig. 

Features Extraction: Applies algorithms to the speech signal 
of the input in order to represent it in a more compact and 
robust way. For this, it is necessary to convert the analog 
signal into a digital representation and determine what is 
silence/noise and to extract in fact the useful voice 
information. With the elimination of noise, the amount of 

voice information is reduced, consequently decreasing the 
computational cost (Serizelet al., 2017)

 Decoder: searches for the best sequence of words in a set of 
possible hypotheses given the representation of speech signal 
characteristics. This step uses the following models: 
acoustic, which transforms the signal being processed into 
words and sentences; and 
for characterizing the language and conditioning the 
combination of words discarding grammatically incorrect 
phrases (Ferreira and Souza, 2017)

 
The performance of speech recognition depends on the accuracy of 
the acoustic models, the complexity of the task defined by the 
language model and the quality of the acquired audio signal. In the 
literature there are several mathematical functions that can be called 
evaluation metrics. In this work the following will be
WER, SER and xRT (Yu and Deng, 2015; Ferreira and Souza, 2017)
WER is one of the most used metrics in continuous speech 
recognition systems. The WER is based on the number of words the 
entered incorrectly, that were deleted, and that were repl
comparison with the reference phrase. This rate is calculated by the 
equation below. 
 

��� =
� + � + �

�
 

 
where: (i)N is the total amount of words in the reference phrase; 
is the total number of errors per substitution; 
of insertion errors; and (iv)E is the total amount of errors per 
exclusion of the generated phrase compared to the reference phrase. 
Fig. 2 shows an example of comparison between reference and 
generated sentences. As can be seen, th
substitutions, one inclusion and one exclusion, totaling four errors. 
The reference phrase has five words. By replacing the respective 
values in equation (1), the WER value is 0.8 (80%).
 

 

The SER represents the number of sente
error, that is, the number of sentences that have a WER higher than 
0% (Ferreira and Souza, 2017). The SER is calculated using the 
following equation: 
 

��� =
�

�
 

 
where E is the number of sentences with at least one error and 
total number of sentences. For example, in a corpus with 100 phrases, 
only 30 presented a WER higher than 0%. Thus, the SER in this 
example is 0.3 (30%).  The xRT factor is used to calculate the speed 
of the speech recognition process. It is calcu
the system spends to recognize a sentence by its duration, as shown in 
the equation below. The smaller is xRT factor, faster the recognition 
will be: 
 

��� =
�

�
 

 
where P is the processing time spent to perform speech recognitio
the audio file and D is the duration time of the audio file. For 
example, the computer takes 1.2 seconds to recognize a file of 28 
seconds, so its xRT factor is 0.04. 
 
Reference Libraries for Speech Recognition
reasons for using libraries for continuous speech recognition was to 
reduce time at the development process. However, it is necessary that 
they are constantly updated and also have a good documentation. 
Based on experimental results, the CM
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ormation is reduced, consequently decreasing the 
Serizelet al., 2017). 

Decoder: searches for the best sequence of words in a set of 
possible hypotheses given the representation of speech signal 
characteristics. This step uses the following models: (i) 
acoustic, which transforms the signal being processed into 

ces; and (ii) language, which is responsible 
for characterizing the language and conditioning the 
combination of words discarding grammatically incorrect 

Ferreira and Souza, 2017). 

The performance of speech recognition depends on the accuracy of 
the acoustic models, the complexity of the task defined by the 
language model and the quality of the acquired audio signal. In the 
literature there are several mathematical functions that can be called 
evaluation metrics. In this work the following will be evaluated: 

Yu and Deng, 2015; Ferreira and Souza, 2017). 
WER is one of the most used metrics in continuous speech 
recognition systems. The WER is based on the number of words the 
entered incorrectly, that were deleted, and that were replaced in 
comparison with the reference phrase. This rate is calculated by the 

is the total amount of words in the reference phrase; (ii)S 
is the total number of errors per substitution; (iii) I is the total amount 

is the total amount of errors per 
exclusion of the generated phrase compared to the reference phrase.  
Fig. 2 shows an example of comparison between reference and 
generated sentences. As can be seen, the phrase generated has two 
substitutions, one inclusion and one exclusion, totaling four errors. 
The reference phrase has five words. By replacing the respective 
values in equation (1), the WER value is 0.8 (80%). 

 
The SER represents the number of sentences that have at least one 
error, that is, the number of sentences that have a WER higher than 

. The SER is calculated using the 

is the number of sentences with at least one error and T is the 
total number of sentences. For example, in a corpus with 100 phrases, 
only 30 presented a WER higher than 0%. Thus, the SER in this 

The xRT factor is used to calculate the speed 
of the speech recognition process. It is calculated by dividing the time 
the system spends to recognize a sentence by its duration, as shown in 
the equation below. The smaller is xRT factor, faster the recognition 

is the processing time spent to perform speech recognition of 
is the duration time of the audio file. For 

example, the computer takes 1.2 seconds to recognize a file of 28 
 

Reference Libraries for Speech Recognition: One of the main 
reasons for using libraries for continuous speech recognition was to 
reduce time at the development process. However, it is necessary that 
they are constantly updated and also have a good documentation. 
Based on experimental results, the CMUSphinx, HTK and Kaldi 
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libraries are the most commonly used. In the following subsections 
the characteristics of these libraries will be described. 

 
CMUSphinx: Sphinx is a speaker-independent continuous speech 
library. It uses the Hidden Markov Models (HMM) technique in the 
acoustic model and the n-gram technique in the language model (Lee 
et al., 1990). The CMUSphinx tools are designed specifically for low-
resource platforms and its license is similar to Berkeley Software 
Distribution (BSD), which enables commercial distribution. In 
addition, this library can be used for several purposes related to 
speech recognition, such as keyword identification, alignment, 
pronunciation evaluation, among others1. 

 
The CMUSphinx toolkit has several library packages for different 
tasks and applications. In this work, we used the PocketSphinx 
package that is ideal for embedded systems. Pocketsphinx is written 
in the C programming language and can be used with Linux, 
Microsoft Windows, MacOS, iPhone and Android. 
 
HTK: HTK2, available in the C programming language, is a toolkit 
for building and manipulating HMM. It is mainly used for speech 
recognition research, but it can be used in a variety of applications, 
such as voice synthesis, character recognition and DNA sequencing. 
In addition, the HTK tools provide sophisticated features for speech 
analysis, training, testing, and results analysis of HMM. 
 
Kaldi: Kaldi3 is an open-source speech recognition toolkit developed 
in the C++ programming language and licensed under the Apache 
License v2.0. Their tools compile on Unix and Microsoft Windows 
systems (Povey et al., 2011). The CMUSphinx and HTK libraries are 
Kaldi's main competitors, but these libraries do not have a finite-state 
transducer-based structure, broad support for linear algebra, and a 
non-restrictive license (Povey et al., 2011). In addition, Kaldi is the 
only library among the three that has Deep Neural Network (DNN) 
support, such as Multilayer Perceptron (MLP) and Recurrent Neural 
Network (RNN). 

 
Speech Corpus: Corpora linguistic are collections of written or 
spoken language data that serve various types of research and can be 
used in all branches of linguistics. In other words, it may be argued 
that corpora are meant to represent a particular language as a whole. 
For example, a researcher might study a corpus of phone 
conversations to prove that people talk on the phone differently than 
when they talk in person (Bauer and Aarts, 2000). For languages that 
are different from English, like the Brazilian Portuguese, obtaining a 
large and free corpus is one of the main challenges encountered by 
researchers in the area (Ferreira and Souza, 2017).  
 
In this work, the corpora available on the website of the FalaBrasil 
group were used, but these have few hours of duration. Most of the 
works published in Brazilian Portuguese are restricted to a reduced 
vocabulary. Therefore, the language model is constituted only by the 
phrases that are present in each speech corpus, that is, the recognition 
developed have a restricted vocabulary, since it recognizes only the 
words that are in the speech corpora(FalaBrasil, 2019; Silva et al., 
2005). The LaPS Benchmark corpus consists of 700 phrases and has 
35 speakers with 20 sentences each, 25 men and 10 women, 
corresponding to approximately 54 minutes of audio. All recordings 
were performed on computers using common microphones, and the 
environment is not controlled (presence of noise). The sampling rate 
used was 22050 Hz and each sample were represented with 16 bits 
(FalaBrasil, 2019). The corpus of Federal Constitution speech consists 
of 1,255 sentences with an average of 30 seconds each, totaling 
approximately 9 hours of audio with only one male announcer. The 
audio files were sampled at 22050 Hz with 16 bits. In addition, a 
controlled recording environment was used, with little presence of 
noise (FalaBrasil, 2019). 

                                                 
1https://cmusphinx.github.io 
2http://htk.eng.cam.ac.uk 
3http://kaldi-asr.org 

It was necessary to split the speech corpora into training audio files 
and tests. The LaPS Benchmark corpus was divided into: (i) training 
with 30 speakers (640 files), where 23 male and 9 females were 
present; and (ii) tests with 3 speakers (60 files), two male and one 
female. The Federal Constitution corpus was divided into 1,129 files 
(90%) for training and 126 files (10%) for tests. 
 

Proposed Solution: The libraries are free and have been installed on 
a computer with the Antergos operating system (Linux distribution 
based on Arch Linux) version 64 bits, according to the respective 
documentation. In the following subsections we will demonstrate the 
training implementation and the tool for performance analysis. 
 
Training Implementation: Acoustic and speech recognition 
language models require training. In these libraries the supervised 
training technique is used, because they learn how to classify training 
data that have already been classified manually by humans (Ferreira 
and Souza, 2017; Copin, 2004). In total, 30 training sessions were 
created in each corpus, with 10 files with different configurations for 
each library. These 10 files were divided into two sets, modifying the 
configuration change logic, as highlighted below: 

 
 In the first set, the default configuration values of all libraries 

were changed uniformly: (i) the values were reduced by 80%; 
(ii) the values were reduced by 40%; (iii) maintained the default 
setting; (iv) the values were increased by 40%; and (v) the 
values were increased by 80%. Thus, 15 configuration files 
were generated.  

 In the second set, for each library we changed: (i)CMUSphinx, 
with the previously mentioned standard values and changing the 
textual options of the configuration parameters, for example, 
where "no" became "yes"; (ii) HTK, the default settings for 
extracting audio characteristics, using the same uniform change 
logic, -80%, -40%, 0%, 40%, and 80%; and (iii) Kaldi, values 
of -80%, -40%, 0%, 40%, and 80% of the configurations using 
DNN. 

 Each configuration file is executed by the source library 
generating an output file. The purpose is to locate the best 
settings, with the following information: (i) start and end date 
and time; and (ii) the output of the library with the value of the 
evaluation metrics SER and WER. 

 
Tool for Performance Analysis: The performance analysis tool 
developed in this project has two versions (desktop and mobile). They 
are used to measure the processor and memory usage of continuous 
speech recognition libraries, which have been implemented in 
Brazilian Portuguese. The name chosen for this tool was OCSR 
(Offline Continuous Speech Recognition). This tool includes the 
implementation of the source codes that are responsible for generating 
the output of the already trained models of the libraries, and only the 
files of test corpora were used. 

 
Desktop Version: The desktop version was used to test the 
performance of libraries on a desktop computer. The result of this test 
was used to find the library that presented the best performance, 
which was implemented in the mobile version. The C++ 
programming language was used in conjunction with the Qt SDK 
(Software Development Kit). In this version we use the four training 
configurations with the best WER rate for each library (CMUSphinx, 
HTK and Kaldi). The implementation of the desktop version is 
available for free in GitLab4. Fig. 3 shows the screen of the desktop 
version, which has the following configuration options: (i) library, 
which is responsible for selecting the library (CMUSphinx, HTK and 
Kaldi) to be tested; and (ii) voice corpus, which is responsible for 
selecting the voice corpus (LaPS Benchmark and Federal 
Constitution) that will be tested. The "Test" button generates the 
result files for the selected library and corpus. 
 

                                                 
4 https://gitlab.com/lucasdebatin/ocsr-desktop 
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For each library and corpus, three results files were generated: (i) start 
date and time; (ii) processor and memory usage, i.e. performance 
required; and (iii) closing date and time. The performance was 
captured using the Linux "top" command, which displays the data 
about the processes running on the device. 
 
Mobile Version: The mobile version was used to test the performance 
on mobile devices of the library that performed best in the desktop 
version. The Kaldi library models presented the best results for 
corpora. However, the implementation of this in-app library was 
unsuccessful, as runnables only work on devices that are granted 
"root" permissions. Attempts to deploy Kaldi were based on the 
compilation tutorial from the Android library5. 

 
For this reason, only the CMUSphinx library models were used, 
which also presented excellent results compared to the results of the 
Kaldi library. The tests were only performed on mobile devices with 
the Android operating system, with version 4.1 being the minimum 
supported. For the implementation, the programming language Java 
and NDK (Android Native Development Kit) were used. The use of 
NDK made it easier to compile the C source code of the library. The 
application source code is available in GitLab6.  Fig. 4 shows the 
application screen, and as you can see, only one message is displayed: 
(i) you are initializing the application by copying the models from the 
library to the internal memory of the device; and (ii) generating the 
test file, running the library with the test corpora speech files, and 
generating the results files. At the end of the tests, a text with the 
following results data is generated for each corpora: (i) percentage of 
the initial processor used to verify that the processor is not 
overloading with another process; (ii) the amount of available 
memory, the full memory indicator and the total amount of memory 
of the device; (iii) battery percentage at the beginning and end of 
tests; (iv) the start and end date and time; and (v) the use of the 
processor (maximum, minimum and average) and memory 
(maximum, minimum and average) during the execution of the tests. 
The percentage of processor usage is obtained using: (i) the command 
"top" in versions smaller than the version 8 of Android; and (ii) the 
command "ps" in versions 8 and 9 of Android. The amount of 
memory and device battery is captured using Java libraries. It was not 
possible to capture the battery usage in watts during the execution of 
the library, for that reason only the percentage of use was captured. 
For tests on mobile devices, it was necessary to reduce the amount of 
test files of the Federal Constitution corpus from 126 to 30, because 
in some devices the time spent for processing exceeded 30 minutes. 
This reduction was necessary to make the tests more attractive and 
quicker for the research volunteers. Additionally, the app has been 
made available on the Play Store7 to facilitate installation in devices. 
 

RESULTS 
 
This section presents and discusses the results of the project, allowing 
an assessment of its contribution and the achievement of objectives. 
In the subsection 3.1, for each library, the training configurations with 
the best values obtained for the WER rate are presented. Subsection 
3.2 presents the best performance of each library on a desktop 
computer. Subsection 3.3 shows the performance of the selected 
library on multiple mobile devices. 

 
Training Settings: This section presents the evaluation metrics 
obtained for each configuration file. Based on the percentages 
obtained in the metrics, the best performance test configurations were 
chosen on a desktop computer. For the measurement of the SER and 
WER evaluation metrics, the following corpora test files were used: 
(i) LaPS Benchmark, which contains 60 phrases and 614 words; and 
(ii) Federal Constitution, which contains 126 phrases and 7073 words. 
Calculations of these metrics are performed by each library. 

                                                 
5 http://jcsilva.github.io/2017/03/18/compile-kaldi-android 
6 https://gitlab.com/lucasdebatin/ocsr-android-native 
7 https://play.google.com/store/apps/details?id=com.debatin.ocsr_android_native 

Each library has 10 configurations with two different sets of 
modifications. The two best selected for the experiments. The 
subsections below present the results obtained for each library. 
 
CMUSphinx: Table 2 shows the values obtained by each 
configuration in the LaPS Benchmark corpus. 

 
Table 2. Configurations of CMUSphinx Library and LaPS 

Benchmark Corpus 

 
ID WER SER Duration 

1 49.4% 93.3% 00:03:08 
2 9.6% 55% 00:03:01 
3 9.1% 56.7% 00:03:17 
4 11.4% 61.7% 00:05:29 
5 22.1% 68.3% 00:08:21 
6 38% 81.7% 00:07:53 
7 8.8% 41.7% 00:04:48 
8 6.7% 45% 00:05:37 
9 6.2% 35% 00:09:13 
10 11.9% 50% 00:11:39 

 
Analyzing Table 2, it can be verified that the best configurations 
obtained have a WER lowerthan 10%. In addition, it can be seen that 
the best evaluation metrics come from configurations whose changed 
values are close to the default library configuration values. The total 
training duration of all settings was about 1 hour.  Table 3 shows the 
values obtained in the Federal Constitution corpus.The results 
presented in Table 3 show that the tests with only one speaker have 
higher accuracy (WER) than the test with several speakers, presented 
in Table 2. Almost all configurations have a WER lower than 14%, 
however they have a high value in the SER metric, that is, many 
sentences were generated with one or more errors. The total training 
duration of all library settings exceeded 6 hours, and one reason for 
this is also the average duration of the corpus test files. 
 

Table 3. Configurations of CMUSphinx Library and Federal 
Constitution Corpus 

 
ID WER SER Duration 

1 14.5% 96.8% 00:22:56 
2 5% 77.8% 00:22:42 
3 3.2% 75.4% 00:27:17 
4 4.6% 81% 00:30:29 
5 5.6% 81.7% 00:32:18 
6 10.8% 90.5% 00:40:43 
7 3% 70.6% 00:43:36 
8 2.2% 59.5% 00:56:03 
9 2% 62.7% 01:17:39 
10 3.4% 67.5% 01:24:58 

 
HTK: Table 4 presents the results of the evaluation metrics obtained 
by the library in the LaPS Benchmark corpus. 

 
Table 4. Configurations of HTK Library and La 

PS Benchmark Corpus 

 
ID Type WER SER Duration 

1 HVite (2-gram) 94.95% 100% 00:05:19 
2 HVite (2-gram) 92.18% 100% 00:05:33 
3 HVite (2-gram) 93.32% 100% 00:05:25 
4 HVite (2-gram) 92.35% 100% 00:05:21 
5 HVite (2-gram) 93.49% 100% 00:05:25 
6 HVite (2-gram) 95.44% 100% 00:05:21 
7 HVite (2-gram) 93.00% 100% 00:05:25 
8 HVite (2-gram) 92.83% 100% 00:05:19 
9 HVite (2-gram) 92.83% 100% 00:05:18 
10 HVite (2-gram) 92.18% 100% 00:05:17 

 
Comparing the results obtained by the CMUSphinx library in the 
same corpus (Table 2), the results of Table 4 were insignificant. In 
addition, when comparing the phrases of the test files with the phrases 
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generated by the library, it turns out that all phrases have at least one 
error. The average training duration was 5 minutes and 22 seconds for 
each setting. Table 5 presents the results obtained in the Federal 
Constitution corpus.The values obtained in Table 5 presented better 
results, but worse than WER of 14%, which is one of the 
requirements of this work. In addition, all generated sentences have 
one or more errors. The average training time was 2 hours and 8 
minutes for each setting. 
 

Table 5. Configurations of HTK Library and Federal 
Constitution Corpus 

 
ID Type WER SER Duration 

1 HVite (2-gram) 91.98% 100% 02:08:11 
2 HVite (2-gram) 89.64% 100% 02:12:03 
3 HVite (2-gram) 86.17% 100% 02:09:21 
4 HVite (2-gram) 86.47% 100% 02:06:09 
5 HVite (2-gram) 84.97% 100% 02:06:32 
6 HVite (2-gram) 93.85% 100% 01:58:51 
7 HVite (2-gram) 88.60% 100% 02:03:42 
8 HVite (2-gram) 83.84% 100% 02:08:38 
9 HVite (2-gram) 82.47% 100% 02:11:46 
10 HVite (2-gram) 84.21% 100% 02:19:31 

 
The HTK library had the worst results. With any configuration and in 
both corpora, it was not possible to reach a WER below 80%. The 
poor results obtained by HTK are justifiable because this library is 
just a toolkit for building and manipulating HMM. For the recognition 
of continuous speech and extensive vocabulary, Julius, the Speech 
Recognition Engine of HTK, can be used. 
 
Kaldi: Table 6 shows the values obtained by each Kaldi library 
configuration in the LaPS Benchmark corpus. 

 
Table 6. Configurations of Kaldi Library and La 

PS Benchmark Corpus 

 
ID Type WER SER Duration 

1 MLP 5.05% 41.67% 00:49:17 
2 RNN 2.61% 21.67% 02:24:06 
3 RNN 6.19% 41.67% 14:18:37 
4 RNN 8.14% 51.67% 92:54:37 
5 N/A N/A N/A N/A 
6 tri3b 5.05% 40% 00:23:41 
7 mono0a 7.17% 38.33% 00:45:13 
8 tri1 6.68% 43.33% 00:42:41 
9 tri1 5.37% 31.67% 00:38:46 
10 tri1 6.51% 41.67% 00:40:57 

 
Table 6 shows that the use of Artificial Neural Networks (ANN) 
presents the best results. However, one problem is the higher time 
spent in training. Therefore, the ID 5 configuration was not trained 
because it would take more than 100 hours. The best results were 
obtained using Recurrent Neural Network (RNN) and Multilayer 
Perceptron (MLP). In addition, classes tri3b and tri1 also showed 
good results. Table 7 presents the results of the library in the Federal 
Constitution corpus.  
 

Table 7. Configurations of Kaldi Library and Federal 
Constitution Corpus 

 

ID Type WER SER Duration 

1 MLP 1.44% 46.03% 07:45:17 
2 RNN 0.98% 41.27% 26:38:27 
3 RNN 0.93% 38.89% 166:47:14 
4 N/A N/A N/A N/A 
5 N/A N/A N/A N/A 
6 tri3b 1.48% 46.03% 01:50:37 
7 tri1 1.61% 49.21% 01:54:36 
8 tri1 1.34% 38.89% 02:02:11 
9 tri1 1.75% 46.03% 05:32:35 
10 tri1 1.80% 48.41% 07:09:14 

 

Examining the table 7, it can be observed that only the three trainings 
for the ANN were generated, since the time spent training for ID 3 
exceeded 150 hours. Therefore, in this case only three configurations 
were selected, not four like the other libraries. The use of RNN and 
the tri3b and tri1 classes presented the best results of the evaluation 
metrics. 
 
Desktop Performance Analysis: The tests were performed only on a 
desktop computer, as configured in Table 1. These tests were 
performed without internet connection, with no software running in 
parallel, and only using the corpora test files. Table 8 shows the 
results obtained in the LaPS Benchmark corpus. In the Figure, the 
"top" command, by default, displays the percentage of a single CPU, 
i.e. multi-core computers can have percentages higher than 100%.For 
each library, the best configuration was selected. The CMUSphinx 
and Kaldi libraries achieved the best results, but the Kaldi library 
stood out because it obtained: (i) the lowest WER percentage; (ii) the 
lowest average processor usage; and (iii) the lowest average memory 
usage. 
 

Table 8. Performance of Libraries in LaPS Benchmark Corpus 

 
Library ID Duration xRT Processor 

(average) 
Memory(ave
rage) 

CMUSphinx 2 00:00:11 0.040 97.50% 0.50% 
CMUSphinx 3 00:00:19 0.069 98.09% 0.50% 
CMUSphinx 8 00:00:36 0.130 98.69% 0.50% 
CMUSphinx 9 00:01:01 0.221 99.20% 0.50% 
HTK 2 00:02:44 0.594 99.17% 0.60% 
HTK 4 00:02:43 0.590 98.68% 0.60% 
HTK 9 00:02:44 0.594 99.00% 0.60% 
HTK 10 00:02:41 0.583 98.79% 0.60% 
Kaldi 1 00:02:18 0.500 98.26% 0.43% 
Kaldi 2 00:03:31 0.764 97.79% 0.39% 
Kaldi 6 00:00:14 0.050 91.92% 0.20% 
Kaldi 9 00:00:19 0.069 96.73% 0.21% 

 
Table 9 presents the performance results obtained by using the 
Federal Constitution corpus. In order to evaluate the results in this 
corpus, the best configuration of each library was selected. It can be 
seen that the CMUSphinx and Kaldi libraries achieved the best 
results. In this corpus, the Kaldi library also stood out, obtaining: (i) 
the lowest percentage WER; (ii) the smallest value xRT; (iii) the 
lowest average processor usage; and (iv) the lowest average memory 
usage. 
 
Table 9. Performance of Libraries in Federal Constitution Corpus 

 
Library ID Duration xRT Processor 

(average) 
Memory 
(average) 

CMUSphinx 3 00:02:29 0.047 99.27% 0.50% 
CMUSphinx 4 00:04:06 0.077 98.35% 0.50% 
CMUSphinx 8 00:04:29 0.084 99.07% 0.50% 
CMUSphinx 9 00:07:45 0.146 98.92% 0.50% 
HTK 3 01:26:02 1.620 99.14% 0.70% 
HTK 5 01:25:52 1.617 99.20% 0.70% 
HTK 8 01:25:58 1.619 99.10% 0.70% 
HTK 9 01:26:07 1.622 98.52% 0.70% 
Kaldi 3 02:39:45 3.008 98.11% 0.95% 
Kaldi 6 00:01:30 0.028 94.76% 0.20% 
Kaldi 8 00:01:54 0.036 97.50% 0.37% 

 
According to Tables 8 and 9, the libraries demanded more processing 
resources than RAM. In addition, the use of ANN presented the best 
results (2.61% in the LaPS Benchmark corpus and 0.93% in the 
Brazilian Constitution corpus). On the other hand, it requires a great 
computational cost, in some cases exceeding two hours of processing, 
thus compromising its use in mobile devices. Still according to Table 
8 and Table 9, the best results were obtained from the Kaldi library. 
However, the implementation of this library on mobile devices was 
unsuccessful. Therefore, the CMUSphinx library, which have results 
very similar to those of the Kaldi library, was chosen. 
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PERFORMANCE ANALYSIS ON MOBILE DEVICES 
 

For the tests on mobile devices the CMUSphinx library was used. The 
tests were performed on 11 devices, with different versions of 
Android (upper 4.1) and hardware configurations. In each device it 
was requested to: (i) disable any form of internet connection (wi-fi, 
mobile data); (ii) remove the cell from the power supply, if there was 
any; (iii) verify that the device had at least 30% battery; and (iv) close 
all open applications. All tested mobile devices have a low initial 
processor usage and sufficient memory to perform the tests. Table 10 
shows the configurations of the mobile devices used in the tests.  
 

Table 10. Configurations of Mobile Devices 
 

Device Android Hardware Configuration 

Samsung 
SM-T110 

4.4.2 Processor: Dual-Core of 1.2 GHz 
RAM Memory: 1 GB 

Samsung 
SM-J200BT 

5.1.1 Processor: Quad-Core of 1.3 GHz 
RAM Memory: 1 GB 

Quantum Fly 6.0 Processor: Deca-Core of 2.1 GHz 
RAM Memory: 3 GB  

Samsung 
SM-J500M 

6.0.1 Processor: Quad-Core of 1.2 GHz  
RAM Memory: 1.5 GB 

LGE LG-
M700 

7.1.1 Processor: Octa-Core of 1.4 GHz  
RAM Memory: 2 GB 

Xiaomi 
Redmi 4X 

7.1.2 Processor: Quad-Core of 1.4 GHz 
RAM Memory: 3 GB 

Motorola 
Moto Z (2) 

8.0.0 Processor: Octa-Core of 2.35 GHz 
RAM Memory: 6 GB  

Motorola 
XT1635-02 

8.0.0 Processor: Octa-Core of 2 GHz 
RAM Memory: 3 GB 

Motorola 
Moto G (5S) 

8.1.0 Processor: Octa-Core of 1.4 GHz 
RAM Memory: 2 GB 

Samsung 
SM-J610G 

8.1.0 Processor: Quad-Core of 1.4 GHz 
RAM Memory: 3 GB 

Xiaomi Mi 
A2 

9.0.0 Processor: Octa-Core of 2.2 GHz 
RAM Memory: 4 GB 

 
Table 118 shows the results obtained during the execution of the LaPS 
Benchmark corpus on mobile devices. On all devices, it is possible to 
notice: (i) the average memory usage was below 70 MB; and (ii) the 
average processor usage was below 50%. It is important to note that 
the processing of the test files by the library does not consume the 
device's battery resources.  Table 129 presents the results obtained 
during the execution of the Federal Constitution corpus. According to 
Table 12, it can also be seen that in all devices: (i) the average 
memory usage was below 80 MB; (ii) the average processor usage 
was below 50%; and (iii) the processing of the test files did not 
consume the battery resources of the devices. It is also important to 
show the behavior of the variable xRT, which computes the 
processing time of the audio file. Table 13 shows a comparison 
between the processor usage and the xRT value obtained for each 
corpus. This table was developed based on the hardware 
configurations of the devices (Table 10) and the xRT values of Tables 
11 and 12. Based on Table 13, it can be seen that the xRT values are 
low in almost all processors, that is, virtually all of them have 
obtained values below 1. However, the time for processing each audio 
of the test corpora in a Dual-Core 1.2 GHz processor was high 
because this processor is old and has only two cores with only 1.2 
GHz each. The values of xRT obtained with an Octa-Core 2.2 GHz 
processor were similar to the values obtained in the analysis of 
performance in the desktop computer. 
 

DISCUSSION 
 

The tool implemented in this work presents two versions: desktop and 
mobile. The main goal of this tool was to find the best off-line 
solution for continuous speech recognition. The desktop version was 
useful to find the library that had the best performance results in the 
tests performed on a desktop computer.  

                                                 
8All test files of the corpus were run, with duration of 00:04:36 (276 seconds). 
9In section 3 it was described that for this corpus only 30 test files were used, 
with duration of 00:12:32 (752 seconds), thus changing the calculation of the 
factor xRT. 

In this version, the xRT value was calculated and information about 
processor and memory usage was collected. The Kaldi library 
achieved the best results, but it was not possible to implement it on 
mobile devices due to permission restrictions. For this reason, the 
CMUSphinx library was used, which obtained results similar to 
Kaldi. The HTK library presented the worst results, with the best 
WER value obtained being higher than 80%. The results obtained in 
the analysis of the performance of the desktop version demonstrated 
that the use of ANN in the continuous voice recognition requires a 
high computational cost but presented the best results. The best cost-
benefit ratio between accuracy and performance was obtained by 
applying HMM. The tests were performed on several mobile devices. 
In this way, it can be observed that in all tested versions of Android, 
the HMM library has successfully performed continuous offline 
speech recognition. It is important to note that the latest versions of 
Android have processed the test files in real time. This was possible 
due to the modern hardware configurations of the mobile devices. 
Experiments were carried out with two speech corpora, one with 
several speakers and the other with only one speaker. The corpus with 
only one speaker presented the best results for the WER rate. Thus, it 
can be concluded that the presence of several speakers is a complexity 
factor of continuous speech recognition. 
 
Finally, Table 14 presents the comparison between the selected works. 
They encompass the state of the art of the research problem, with the 
best solution found in that article. Only the work related to identifiers 
(Pakoci et al., 2017, 2018) presented error rate results in offline mode 
for mobile devices. Our solution uses the main acoustic and language 
techniques for the implementation of the solution, as it can be seen in 
Table 14. This work is the state-of-the-art for Brazilian Portuguese 
language, since there are no works with the same objective for this 
language. It is also possible to remark the average WER obtained in 
the articles as the state-of-the-art is 14.01% for several languages. In 
this work, the WER obtained for Brazilian Portuguese was better than 
this average, both for the corpus with one speaker (3.2%) and for the 
corpus with several speakers (9.6%). Some of the limitations 
presented by Pakoci et al. (2017, 2018) are the lack of comparison 
metrics for the optimization of processor, memory and battery usage 
in mobile devices. These metrics, presented in our approach, are 
among those that can be considered very relevant to the context of the 
solution. Moreover, these works present the use of DNN (MLP and 
RNN) implemented through the Kaldi library, which require a high 
computational cost. In both works two voice corpora are used: (i) 154 
hours, with 87 thousand statements, with an average of 15 words 
each, with 21 male announcers and 27 female announcers; and (ii) 61 
hours, with 170 male and 181 female speakers. With a corpus of text 
containing about 1.5 million words. We can also highlight the work 
from Abushariah (2018) which presented results in the online mode 
with WER of 2.68%. It used the same techniques and the same library 
of our work, although it was used for an online solution. In addition, 
there was a significant difference in the size of the corpus speech for 
training. While we had limitations on corpora size, Abushariah 
(2018)presented a solution based on training in a much larger corpus, 
composed of 41,005 sentences. The authoranalysedspeech data 
collected from 36 native speakers from 11 different Arab countries, 
summing about 45 hours of speech. It is also worthwhileto mention 
Georgescu et al. (2017), which presented aDNN, from Kaldi library, 
as a solution for the WER reduction. The author did not use data in 
offline mode and on mobile devices. Three corpora were used: (i) 100 
hours in a quiet environment; (ii) 28 hours of talk shows (affected by 
noise) and news (clean speech); and (iii) 103 hours of talk time. Two 
corpora of texts, including 315 million words collected from news 
sites and 40 million words of meetings transcripts, were analysed. 
 
CONCLUSIONS AND FUTURE WORK 
 

This research had as its main objective the development of offline 
continuous speech recognition for mobile devices in the Brazilian 
Portuguese language. Also, checking the performance analysis on 
various mobile devices with the Android operating system. 
Performance analysis has demonstrated that it is possible to run the 
CMUSphinx library in applications for real-time speech recognition.  
 

52253                                                               Lucas Debatin et al. Offline continuous speech recognition for mobile devices 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 10. Configurations of Mobile Devices 

 
Device Android Hardware Configuration 

Samsung SM-T110 4.4.2 Processor: Dual-Core of 1.2 GHz 
RAM Memory: 1 GB 

Samsung SM-J200BT 5.1.1 Processor: Quad-Core of 1.3 GHz 
RAM Memory: 1 GB 

Quantum Fly 6.0 Processor: Deca-Core of 2.1 GHz 
RAM Memory: 3 GB  

Samsung SM-J500M 6.0.1 Processor: Quad-Core of 1.2 GHz  
RAM Memory: 1.5 GB 

LGE LG-M700 7.1.1 Processor: Octa-Core of 1.4 GHz  
RAM Memory: 2 GB 

Xiaomi Redmi 4X 7.1.2 Processor: Quad-Core of 1.4 GHz 
RAM Memory: 3 GB 

Motorola Moto Z (2) 8.0.0 Processor: Octa-Core of 2.35 GHz 
RAM Memory: 6 GB  

Motorola XT1635-02 8.0.0 Processor: Octa-Core of 2 GHz 
RAM Memory: 3 GB 

Motorola Moto G (5S) 8.1.0 Processor: Octa-Core of 1.4 GHz 
RAM Memory: 2 GB 

Samsung SM-J610G 8.1.0 Processor: Quad-Core of 1.4 GHz 
RAM Memory: 3 GB 

Xiaomi Mi A2 9.0.0 Processor: Octa-Core of 2.2 GHz 
RAM Memory: 4 GB 

 
Table 11. Performance of LaPS Benchmark Corpus 

 
Device Duration xRT Battery Processor (average) Memory (average) 

Samsung SM-T110 01:53:27 24.6 0% 32% 17.49 MB 
Samsung SM-J200BT 00:01:11 0.257 0% 25% 27.22 MB 
Quantum Fly 00:00:41 0.149 0% 45% 67.32 MB 
Samsung SM-J500M 00:00:46 0.167 1% 25% 41.45 MB 
LGE LG-M700 00:00:36 0.130 0% 21% 63.05 MB 
Xiaomi Redmi 4X 00:00:34 0.123 0% 25% 50.43 MB 
Motorola Moto Z (2) 00:00:28 0.101 0% 6% 21.98 MB 
Motorola XT1635-02 00:00:27 0.978 0% 1% 53.39 MB 
Motorola Moto G (5S) 00:00:43 0.156 0% 27% 43.81 MB 
Samsung SM-J610G 00:00:43 0,156 0% 3% 30,96 MB 
Xiaomi Mi A2 00:00:10 0,036 0% 12% 27,30 MB 

 
Table 12. Performance of Federal Constitution Corpus 

 
Device Duration xRT Battery Processor(average) Memory(average) 

Samsung SM-T110 02:44:02 13.08 1% 33% 21.52 MB 
Samsung SM-J200BT 00:04:51 0.387 1% 20% 32.97 MB 
Quantum Fly 00:02:55 0.233 1% 46% 74.97 MB 
Samsung SM-J500M 00:05:05 0.406 0% 24% 38.31 MB 
LGE LG-M700 00:02:11 0.174 1% 36% 59.80 MB 
Xiaomi Redmi 4X 00:04:00 0.319 1% 25% 51.55 MB 
Motorola Moto Z (2) 00:00:28 0.037 0% 22% 26.67 MB 
Motorola XT1635-02 00:01:36 0.128 1% 9% 55.47 MB 
Motorola Moto G (5S) 00:01:58 0.157 1% 28% 53.04 MB 
Samsung SM-J610G 00:02:17 0.182 0% 20% 33.28 MB 
Xiaomi Mi A2 00:00:32 0.043 0% 4% 30.51 MB 

 
Table 13. Comparative Between Processor and xRT Value 

 
Processor xRTLaPS Benchmark Corpus xRT Federal Constitution Corpus 

Dual-Core of 1.2 GHz 24.66 13.08 
Quad-Core of 1.2 GHz  0.167 0.406 
Quad-Core of 1.3 GHz 0.257 0.387 
Quad-Core of 1.4 GHz 0.123 0.319 
Quad-Core of 1.4 GHz 0.156 0.182 
Octa-Core of 1.4 GHz  0.130 0.174 
Octa-Core of 1.4 GHz 0.156 0.157 
Octa-Core of 2 GHz 0.978 0.128 
Octa-Core of 2.2 GHz 0.036 0.043 
Octa-Core of 2.35 GHz  0.101 0.037 
Deca-Core of 2.1 GHz  0.149 0.233 
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However, this can only be done in devices with hardware 
configurations with higher computational resources, since they 
presented a low score in xRT. For devices with hardware 
configurations with limited computational resources, it is only 
possible to use this library in applications that perform interview 
audio transcriptions, for example.   All the tests were performed 
without internet connection, seeking for emphasizing that this 
continuous speech recognition can work successfully in environments 
without internet. The tests corroborated the feasibility of 
applyingspeech recognition of the Brazilian Portuguese language in 
offline mobile devices. The main contributions of this work are: (i) 
the implementation of an off-line speech recognition solution for the 
Brazilian Portuguese language; (ii) the development of a tool for 
performance analysis of the CMUSphinx, HTK and Kaldi libraries on 
a desktop computer; and (iii) the development of a tool for analyzing 
the performance of the CMUSphinx library on various mobile devices 
running the Android operating system. It is worth mentioning that all 
tools developed in this work are available free of charge in GitLab, 
serving as a basis for future work. 

 
In addition, it is also possible to highlight as a contribution of the 
work the comparison carried out between the training configurations 
for each library in order to locate the best evaluation metric. This 
speech recognition implementation can be used in software and 
applications: (i) that assist in the communication of people with 
disabilities; (ii) companies that streamline the work of employees; and 
(iii) that require this function in areas without connection to the 
Internet. The performance analysis tool can be used to measure the 
required performance of a new corpus speech. Throughout the 
development of this work, some possibilities of improvement and 
continuation could be identified from future research, which includes: 
 

 Implementing the Kaldi library on mobile devices without the 
need for "superuser" permission, so it will be necessary to 
compile the library files in a different way; 

 Carrying out a study on how to reduce the computational cost 
(processing) required by ANN that perform continuous speech 
recognition to be applied on mobile devices. For this, it will 
be necessary to find and implement ANN that performs better; 

 Using intelligent software agents to get the training settings 
with the best WER rate. For this, it will be necessary to 
perform the implementation of this agent and configure it to 
change the settings of the libraries; 

 Analyzing the performance of offline speech recognition on 
mobile devices with the IOS operating system. For this, it will 
be possible to use the same library used in Android. 
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