

OFFLINE CONTINUOUS SPEECH RECOGNITION FOR MOBILE DEVICES

Lucas Debatin1, Aluizio Haendchen Filho1*, Rudimar Luís Scaranto Dazzi1,
Hércules Antonio do Prado2 and Edilson Ferneda2

1Laboratory of Applied Intelligence, University of the Itajaí Valley, Itajaí-SC, Brazil
2Catholic University of Brasilia, Brasília-DF, Brazil

ARTICLE INFO ABSTRACT

Speech recognition is an option of accessibility in electronic devices. Currently, this recognition is
accomplished through Application Programming Interfaces that depend on Internet connection
and which are often made available by proprietary software. Voice recognition is an important
technology for improving HCI (Human-Computer Interaction), after all speech is a human feature
that most people have. The increased use of adaptive interfaces using speech recognition results
from the fact that speech is the most natural form of interaction. Speech makes it faster to access
information in software and applications, compared to standard interaction forms such as
touchscreen, mouse, keyboard, among others. Considering this context, this work presents an
open-source solution for continuous speech recognition in mobile devices. At first, a tool
comparing the processing and memory usage of library configurations on a desktop computer was
developed. Then, we implemented the best alternatives in an Android application and tested its
performance and battery usage on several mobile devices. For this, the best libraries were
selected, and their configuration files were optimized to find the most cost-effective solution
between performance and accuracy of the Word Error Rate (WER) and Sentence Error Rate
(SER) rates.

Copyright © 2021, Lucas Debatin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Since the emergence of computers, researchers have been looking for
ways to make computer systems smarter. One of these forms is the
understanding of speech, which aims to make machines capable of
understanding and communicating in natural language. To understand
speech computationally, it is necessary to convert spoken language
into text; this process is called speech recognition (Soni, 2019;
Jurafsky and Martin, 2008). The increased use of adaptive interfaces
using speech recognition results from the fact that speech is the most
natural form of interaction. Speech makes it faster to access
information in software and applications, compared to standard
interaction forms such as touchscreen, mouse, keyboard, among
others (Hearst, 2011). Voice recognition is an important technology
for improving HCI (Human-Computer Interaction), after all speech is
a human feature that most people have. Advances in speech
recognition techniques have enabled the use of this technology in
many applications, including mobile devices. While many tasks are
best addressed with visual interfaces (keyboard, mouse, and so on),
voice has the potential to be a more natural interface. It can provide
interaction even if the user is busy with his hands and eyes or haves
limited abilities.

These are advantageous regardless of the type of user, except for
people with aphonia or dysphonia (NationalAcademies of Sciences,
Engineering, and Medicine, 2017; Yu and Deng, 2015). Speech
recognition can be classified into two types: (i) Isolated words, which
require sentences to be pronounced with pauses between each word,
useful in simple systems and with small vocabulary, such as,
command and control systems by voice; and (ii) Continuous, focusing
at making communication more effective for humans, since they
recognize sentences pronounced in a natural way, that is, without the
need for pauses between words (Huang and Deng, 2010). Our
approach works with continuous type recognition. This mode of
speech recognition is more complex when compared to the
recognition of isolated words, since it’s able to handle all the
characteristics and vices of speech. Moreover, in this type, there is no
information on where certain words or phonemes begin and end.
Consequently, many words can be replaced or unidentified (Jurafsky
and Martin, 2008). Currently, Web Speech, Java Speech, Google
Cloud Speech and Bing Speech APIs facilitate the implementation of
continuous voice recognition of Brazilian Portuguese in software and
applications. However, these APIs cannot be used in all application
types of application because they need an internet connection. In
addition, they are proprietary software, can cash in on access, and

ISSN: 2230-9926

International Journal of Development Research
Vol. 11, Issue, 11, pp. 52248-52256, November, 2021

https://doi.org/10.37118/ijdr.23437.11.2021

Article History:

Received 10th August, 2021
Received in revised form
12th September, 2021
Accepted 24th October, 2021
Published online 30th November, 2021

Available online at http://www.journalijdr.com

Citation: Lucas Debatin, Aluizio Haendchen Filho, Rudimar Luís Scaranto Dazzi, Hércules Antonio do Prado and Edilson Ferneda. “Offline Continuous Speech
Recognition for Mobile Devices.”, International Journal of Development Research, 11, (11), 52248-52256.

 RESEARCH ARTICLE OPEN ACCESS

Key Words:

Continuous Speech Recognition, Offline
Speech Recognition, Natural Language
Processing, Mobile Devices.

*Corresponding author:
Aluizio Haendchen Filho

generate cost for those who use it on a large scale (
Tevah, 2006; Debatin et al., 2018). Although it characterizes an old
approach, since society is currently in the cloud computing age, the
offline technique has some advantages: (i) it does not suffer from
problems related to latency and bandwidth, since they do not need
servers in the cloud or remote; (ii) do not have server
issues, since cloud services serve multiple clients, and
present security, compliance, and regulatory issues (
In order to implement speech recognition, it is necessary to k
some of its fundamental properties, such as: (i)
voice signal, which are the various information about the speaker
present in the audio signal; (ii) the forms for extracting and decoding
audio characteristics, used to generate the best textual sequence from
the input audio signal; and (iii) the evaluation metrics, which are used
to measure speech recognition performance (Ferreira and Souza,
2017). To enable recognition in offline mode, it is necessary to
perform voice recognition processing on the mobile device itself.
Voice recognition has a high computational complexity and requires a
lot of memory, and this is a constraint, since many smartphones an
tablets have limited hardware resources (Georgescu
Gupta and Owens, 2011). This work presents a solution for off
continuous speech recognition. After a systematic review of the
literature, the libraries CMUSphinx, Hidden Markov Models
(HTK) and Kaldi were selected and analyzed. Each library has
specific configuration files that were edited to find the most cost
effective configuration of Word Error Rate (WER) and
Rate (SER) performance and accuracy. A tool was dev
analyze the procedures, comparing the processing and memory usage
of the library settings on a desktop computer. The better evaluated
library and configuration were selected and implemented in an
Android application, that was evaluated for the sa
and battery usage.

MATERIALS AND METHODS

This section presents the fundamentals that guided this investigation
along with technical references adopt to implement the solution.

BACKGROUND

The basis for discussing speech recognition, involving the concepts,
the libraries, and the speech corpus considered in this work are
presented in this subsection.

Speech Recognition: Speech recognition is the process of converting
the analog speech signal into its textual representation. In this wa
the generated text is composed of the sequence of words that have
been identified from the input signal. Speech recognition is a research
area that has been active for over five decades. In the old days, the
speech was little used in the HCI, since it d
efficiency and precision of the keyboard and the mouse. This is due to
the fact that the technology of the time was not advanced enough.
However, in recent years the computational power has increased,
allowing the training of larger and more complex models, thus
reducing WER (Yu and Deng, 2015).

Speech recognition simulates the human hearing system, and its
performance is influenced by the characteristics that affect the speech
signal, such as the vocabulary used, characteristics of the
and background noises (Meyer et al., 2014).

The basic structure of speech recognition systems, shown in Fig.
1, is divided into two steps:

 Features Extraction: Applies algorithms to the speech signal

of the input in order to represent it in a m
robust way. For this, it is necessary to convert the analog
signal into a digital representation and determine what is
silence/noise and to extract in fact the useful voice
information. With the elimination of noise, the amount of

52249 Lucas Debatin et al.

generate cost for those who use it on a large scale (Neto et al., 2011;
Although it characterizes an old

approach, since society is currently in the cloud computing age, the
it does not suffer from

problems related to latency and bandwidth, since they do not need
do not have server-side sharing

issues, since cloud services serve multiple clients, and (iii) do not
present security, compliance, and regulatory issues (Grossman, 2009).
In order to implement speech recognition, it is necessary to know

(i) the features of the
voice signal, which are the various information about the speaker

the forms for extracting and decoding
audio characteristics, used to generate the best textual sequence from

the evaluation metrics, which are used
Ferreira and Souza,

enable recognition in offline mode, it is necessary to
perform voice recognition processing on the mobile device itself.
Voice recognition has a high computational complexity and requires a
lot of memory, and this is a constraint, since many smartphones and

(Georgescu et al., 2021;
This work presents a solution for off-line

continuous speech recognition. After a systematic review of the
literature, the libraries CMUSphinx, Hidden Markov Models Toolkit
(HTK) and Kaldi were selected and analyzed. Each library has
specific configuration files that were edited to find the most cost-

(WER) and Sentence Error
SER) performance and accuracy. A tool was developed to

analyze the procedures, comparing the processing and memory usage
of the library settings on a desktop computer. The better evaluated
library and configuration were selected and implemented in an
Android application, that was evaluated for the sake of performance

MATERIALS AND METHODS

This section presents the fundamentals that guided this investigation
along with technical references adopt to implement the solution.

involving the concepts,
the libraries, and the speech corpus considered in this work are

Speech recognition is the process of converting
the analog speech signal into its textual representation. In this way,
the generated text is composed of the sequence of words that have

Speech recognition is a research
area that has been active for over five decades. In the old days, the
speech was little used in the HCI, since it did not surpass the
efficiency and precision of the keyboard and the mouse. This is due to
the fact that the technology of the time was not advanced enough.
However, in recent years the computational power has increased,

more complex models, thus

Speech recognition simulates the human hearing system, and its
performance is influenced by the characteristics that affect the speech
signal, such as the vocabulary used, characteristics of the speakers

The basic structure of speech recognition systems, shown in Fig.

Features Extraction: Applies algorithms to the speech signal
of the input in order to represent it in a more compact and
robust way. For this, it is necessary to convert the analog
signal into a digital representation and determine what is
silence/noise and to extract in fact the useful voice
information. With the elimination of noise, the amount of

voice information is reduced, consequently decreasing the
computational cost (Serizelet al., 2017)

 Decoder: searches for the best sequence of words in a set of
possible hypotheses given the representation of speech signal
characteristics. This step uses the following models:
acoustic, which transforms the signal being processed into
words and sentences; and
for characterizing the language and conditioning the
combination of words discarding grammatically incorrect
phrases (Ferreira and Souza, 2017)

The performance of speech recognition depends on the accuracy of
the acoustic models, the complexity of the task defined by the
language model and the quality of the acquired audio signal. In the
literature there are several mathematical functions that can be called
evaluation metrics. In this work the following will be
WER, SER and xRT (Yu and Deng, 2015; Ferreira and Souza, 2017)
WER is one of the most used metrics in continuous speech
recognition systems. The WER is based on the number of words the
entered incorrectly, that were deleted, and that were repl
comparison with the reference phrase. This rate is calculated by the
equation below.

��� =
� + � + �

�

where: (i)N is the total amount of words in the reference phrase;
is the total number of errors per substitution;
of insertion errors; and (iv)E is the total amount of errors per
exclusion of the generated phrase compared to the reference phrase.
Fig. 2 shows an example of comparison between reference and
generated sentences. As can be seen, th
substitutions, one inclusion and one exclusion, totaling four errors.
The reference phrase has five words. By replacing the respective
values in equation (1), the WER value is 0.8 (80%).

The SER represents the number of sente
error, that is, the number of sentences that have a WER higher than
0% (Ferreira and Souza, 2017). The SER is calculated using the
following equation:

��� =
�

�

where E is the number of sentences with at least one error and
total number of sentences. For example, in a corpus with 100 phrases,
only 30 presented a WER higher than 0%. Thus, the SER in this
example is 0.3 (30%). The xRT factor is used to calculate the speed
of the speech recognition process. It is calcu
the system spends to recognize a sentence by its duration, as shown in
the equation below. The smaller is xRT factor, faster the recognition
will be:

��� =
�

�

where P is the processing time spent to perform speech recognitio
the audio file and D is the duration time of the audio file. For
example, the computer takes 1.2 seconds to recognize a file of 28
seconds, so its xRT factor is 0.04.

Reference Libraries for Speech Recognition
reasons for using libraries for continuous speech recognition was to
reduce time at the development process. However, it is necessary that
they are constantly updated and also have a good documentation.
Based on experimental results, the CM

Lucas Debatin et al. Offline continuous speech recognition for mobile devices

ormation is reduced, consequently decreasing the
Serizelet al., 2017).

Decoder: searches for the best sequence of words in a set of
possible hypotheses given the representation of speech signal
characteristics. This step uses the following models: (i)
acoustic, which transforms the signal being processed into

ces; and (ii) language, which is responsible
for characterizing the language and conditioning the
combination of words discarding grammatically incorrect

Ferreira and Souza, 2017).

The performance of speech recognition depends on the accuracy of
the acoustic models, the complexity of the task defined by the
language model and the quality of the acquired audio signal. In the
literature there are several mathematical functions that can be called
evaluation metrics. In this work the following will be evaluated:

Yu and Deng, 2015; Ferreira and Souza, 2017).
WER is one of the most used metrics in continuous speech
recognition systems. The WER is based on the number of words the
entered incorrectly, that were deleted, and that were replaced in
comparison with the reference phrase. This rate is calculated by the

is the total amount of words in the reference phrase; (ii)S
is the total number of errors per substitution; (iii) I is the total amount

is the total amount of errors per
exclusion of the generated phrase compared to the reference phrase.
Fig. 2 shows an example of comparison between reference and
generated sentences. As can be seen, the phrase generated has two
substitutions, one inclusion and one exclusion, totaling four errors.
The reference phrase has five words. By replacing the respective
values in equation (1), the WER value is 0.8 (80%).

The SER represents the number of sentences that have at least one
error, that is, the number of sentences that have a WER higher than

. The SER is calculated using the

is the number of sentences with at least one error and T is the
total number of sentences. For example, in a corpus with 100 phrases,
only 30 presented a WER higher than 0%. Thus, the SER in this

The xRT factor is used to calculate the speed
of the speech recognition process. It is calculated by dividing the time
the system spends to recognize a sentence by its duration, as shown in
the equation below. The smaller is xRT factor, faster the recognition

is the processing time spent to perform speech recognition of
is the duration time of the audio file. For

example, the computer takes 1.2 seconds to recognize a file of 28

Reference Libraries for Speech Recognition: One of the main
reasons for using libraries for continuous speech recognition was to
reduce time at the development process. However, it is necessary that
they are constantly updated and also have a good documentation.
Based on experimental results, the CMUSphinx, HTK and Kaldi

continuous speech recognition for mobile devices

libraries are the most commonly used. In the following subsections
the characteristics of these libraries will be described.

CMUSphinx: Sphinx is a speaker-independent continuous speech
library. It uses the Hidden Markov Models (HMM) technique in the
acoustic model and the n-gram technique in the language model (Lee
et al., 1990). The CMUSphinx tools are designed specifically for low-
resource platforms and its license is similar to Berkeley Software
Distribution (BSD), which enables commercial distribution. In
addition, this library can be used for several purposes related to
speech recognition, such as keyword identification, alignment,
pronunciation evaluation, among others1.

The CMUSphinx toolkit has several library packages for different
tasks and applications. In this work, we used the PocketSphinx
package that is ideal for embedded systems. Pocketsphinx is written
in the C programming language and can be used with Linux,
Microsoft Windows, MacOS, iPhone and Android.

HTK: HTK2, available in the C programming language, is a toolkit
for building and manipulating HMM. It is mainly used for speech
recognition research, but it can be used in a variety of applications,
such as voice synthesis, character recognition and DNA sequencing.
In addition, the HTK tools provide sophisticated features for speech
analysis, training, testing, and results analysis of HMM.

Kaldi: Kaldi3 is an open-source speech recognition toolkit developed
in the C++ programming language and licensed under the Apache
License v2.0. Their tools compile on Unix and Microsoft Windows
systems (Povey et al., 2011). The CMUSphinx and HTK libraries are
Kaldi's main competitors, but these libraries do not have a finite-state
transducer-based structure, broad support for linear algebra, and a
non-restrictive license (Povey et al., 2011). In addition, Kaldi is the
only library among the three that has Deep Neural Network (DNN)
support, such as Multilayer Perceptron (MLP) and Recurrent Neural
Network (RNN).

Speech Corpus: Corpora linguistic are collections of written or
spoken language data that serve various types of research and can be
used in all branches of linguistics. In other words, it may be argued
that corpora are meant to represent a particular language as a whole.
For example, a researcher might study a corpus of phone
conversations to prove that people talk on the phone differently than
when they talk in person (Bauer and Aarts, 2000). For languages that
are different from English, like the Brazilian Portuguese, obtaining a
large and free corpus is one of the main challenges encountered by
researchers in the area (Ferreira and Souza, 2017).

In this work, the corpora available on the website of the FalaBrasil
group were used, but these have few hours of duration. Most of the
works published in Brazilian Portuguese are restricted to a reduced
vocabulary. Therefore, the language model is constituted only by the
phrases that are present in each speech corpus, that is, the recognition
developed have a restricted vocabulary, since it recognizes only the
words that are in the speech corpora(FalaBrasil, 2019; Silva et al.,
2005). The LaPS Benchmark corpus consists of 700 phrases and has
35 speakers with 20 sentences each, 25 men and 10 women,
corresponding to approximately 54 minutes of audio. All recordings
were performed on computers using common microphones, and the
environment is not controlled (presence of noise). The sampling rate
used was 22050 Hz and each sample were represented with 16 bits
(FalaBrasil, 2019). The corpus of Federal Constitution speech consists
of 1,255 sentences with an average of 30 seconds each, totaling
approximately 9 hours of audio with only one male announcer. The
audio files were sampled at 22050 Hz with 16 bits. In addition, a
controlled recording environment was used, with little presence of
noise (FalaBrasil, 2019).

1https://cmusphinx.github.io
2http://htk.eng.cam.ac.uk
3http://kaldi-asr.org

It was necessary to split the speech corpora into training audio files
and tests. The LaPS Benchmark corpus was divided into: (i) training
with 30 speakers (640 files), where 23 male and 9 females were
present; and (ii) tests with 3 speakers (60 files), two male and one
female. The Federal Constitution corpus was divided into 1,129 files
(90%) for training and 126 files (10%) for tests.

Proposed Solution: The libraries are free and have been installed on
a computer with the Antergos operating system (Linux distribution
based on Arch Linux) version 64 bits, according to the respective
documentation. In the following subsections we will demonstrate the
training implementation and the tool for performance analysis.

Training Implementation: Acoustic and speech recognition
language models require training. In these libraries the supervised
training technique is used, because they learn how to classify training
data that have already been classified manually by humans (Ferreira
and Souza, 2017; Copin, 2004). In total, 30 training sessions were
created in each corpus, with 10 files with different configurations for
each library. These 10 files were divided into two sets, modifying the
configuration change logic, as highlighted below:

 In the first set, the default configuration values of all libraries

were changed uniformly: (i) the values were reduced by 80%;
(ii) the values were reduced by 40%; (iii) maintained the default
setting; (iv) the values were increased by 40%; and (v) the
values were increased by 80%. Thus, 15 configuration files
were generated.

 In the second set, for each library we changed: (i)CMUSphinx,
with the previously mentioned standard values and changing the
textual options of the configuration parameters, for example,
where "no" became "yes"; (ii) HTK, the default settings for
extracting audio characteristics, using the same uniform change
logic, -80%, -40%, 0%, 40%, and 80%; and (iii) Kaldi, values
of -80%, -40%, 0%, 40%, and 80% of the configurations using
DNN.

 Each configuration file is executed by the source library
generating an output file. The purpose is to locate the best
settings, with the following information: (i) start and end date
and time; and (ii) the output of the library with the value of the
evaluation metrics SER and WER.

Tool for Performance Analysis: The performance analysis tool
developed in this project has two versions (desktop and mobile). They
are used to measure the processor and memory usage of continuous
speech recognition libraries, which have been implemented in
Brazilian Portuguese. The name chosen for this tool was OCSR
(Offline Continuous Speech Recognition). This tool includes the
implementation of the source codes that are responsible for generating
the output of the already trained models of the libraries, and only the
files of test corpora were used.

Desktop Version: The desktop version was used to test the
performance of libraries on a desktop computer. The result of this test
was used to find the library that presented the best performance,
which was implemented in the mobile version. The C++
programming language was used in conjunction with the Qt SDK
(Software Development Kit). In this version we use the four training
configurations with the best WER rate for each library (CMUSphinx,
HTK and Kaldi). The implementation of the desktop version is
available for free in GitLab4. Fig. 3 shows the screen of the desktop
version, which has the following configuration options: (i) library,
which is responsible for selecting the library (CMUSphinx, HTK and
Kaldi) to be tested; and (ii) voice corpus, which is responsible for
selecting the voice corpus (LaPS Benchmark and Federal
Constitution) that will be tested. The "Test" button generates the
result files for the selected library and corpus.

4 https://gitlab.com/lucasdebatin/ocsr-desktop

52250 International Journal of Development Research, Vol. 11, Issue, 11, pp.52248-52256, November, 2021

For each library and corpus, three results files were generated: (i) start
date and time; (ii) processor and memory usage, i.e. performance
required; and (iii) closing date and time. The performance was
captured using the Linux "top" command, which displays the data
about the processes running on the device.

Mobile Version: The mobile version was used to test the performance
on mobile devices of the library that performed best in the desktop
version. The Kaldi library models presented the best results for
corpora. However, the implementation of this in-app library was
unsuccessful, as runnables only work on devices that are granted
"root" permissions. Attempts to deploy Kaldi were based on the
compilation tutorial from the Android library5.

For this reason, only the CMUSphinx library models were used,
which also presented excellent results compared to the results of the
Kaldi library. The tests were only performed on mobile devices with
the Android operating system, with version 4.1 being the minimum
supported. For the implementation, the programming language Java
and NDK (Android Native Development Kit) were used. The use of
NDK made it easier to compile the C source code of the library. The
application source code is available in GitLab6. Fig. 4 shows the
application screen, and as you can see, only one message is displayed:
(i) you are initializing the application by copying the models from the
library to the internal memory of the device; and (ii) generating the
test file, running the library with the test corpora speech files, and
generating the results files. At the end of the tests, a text with the
following results data is generated for each corpora: (i) percentage of
the initial processor used to verify that the processor is not
overloading with another process; (ii) the amount of available
memory, the full memory indicator and the total amount of memory
of the device; (iii) battery percentage at the beginning and end of
tests; (iv) the start and end date and time; and (v) the use of the
processor (maximum, minimum and average) and memory
(maximum, minimum and average) during the execution of the tests.
The percentage of processor usage is obtained using: (i) the command
"top" in versions smaller than the version 8 of Android; and (ii) the
command "ps" in versions 8 and 9 of Android. The amount of
memory and device battery is captured using Java libraries. It was not
possible to capture the battery usage in watts during the execution of
the library, for that reason only the percentage of use was captured.
For tests on mobile devices, it was necessary to reduce the amount of
test files of the Federal Constitution corpus from 126 to 30, because
in some devices the time spent for processing exceeded 30 minutes.
This reduction was necessary to make the tests more attractive and
quicker for the research volunteers. Additionally, the app has been
made available on the Play Store7 to facilitate installation in devices.

RESULTS

This section presents and discusses the results of the project, allowing
an assessment of its contribution and the achievement of objectives.
In the subsection 3.1, for each library, the training configurations with
the best values obtained for the WER rate are presented. Subsection
3.2 presents the best performance of each library on a desktop
computer. Subsection 3.3 shows the performance of the selected
library on multiple mobile devices.

Training Settings: This section presents the evaluation metrics
obtained for each configuration file. Based on the percentages
obtained in the metrics, the best performance test configurations were
chosen on a desktop computer. For the measurement of the SER and
WER evaluation metrics, the following corpora test files were used:
(i) LaPS Benchmark, which contains 60 phrases and 614 words; and
(ii) Federal Constitution, which contains 126 phrases and 7073 words.
Calculations of these metrics are performed by each library.

5 http://jcsilva.github.io/2017/03/18/compile-kaldi-android
6 https://gitlab.com/lucasdebatin/ocsr-android-native
7 https://play.google.com/store/apps/details?id=com.debatin.ocsr_android_native

Each library has 10 configurations with two different sets of
modifications. The two best selected for the experiments. The
subsections below present the results obtained for each library.

CMUSphinx: Table 2 shows the values obtained by each
configuration in the LaPS Benchmark corpus.

Table 2. Configurations of CMUSphinx Library and LaPS

Benchmark Corpus

ID WER SER Duration

1 49.4% 93.3% 00:03:08
2 9.6% 55% 00:03:01
3 9.1% 56.7% 00:03:17
4 11.4% 61.7% 00:05:29
5 22.1% 68.3% 00:08:21
6 38% 81.7% 00:07:53
7 8.8% 41.7% 00:04:48
8 6.7% 45% 00:05:37
9 6.2% 35% 00:09:13
10 11.9% 50% 00:11:39

Analyzing Table 2, it can be verified that the best configurations
obtained have a WER lowerthan 10%. In addition, it can be seen that
the best evaluation metrics come from configurations whose changed
values are close to the default library configuration values. The total
training duration of all settings was about 1 hour. Table 3 shows the
values obtained in the Federal Constitution corpus.The results
presented in Table 3 show that the tests with only one speaker have
higher accuracy (WER) than the test with several speakers, presented
in Table 2. Almost all configurations have a WER lower than 14%,
however they have a high value in the SER metric, that is, many
sentences were generated with one or more errors. The total training
duration of all library settings exceeded 6 hours, and one reason for
this is also the average duration of the corpus test files.

Table 3. Configurations of CMUSphinx Library and Federal
Constitution Corpus

ID WER SER Duration

1 14.5% 96.8% 00:22:56
2 5% 77.8% 00:22:42
3 3.2% 75.4% 00:27:17
4 4.6% 81% 00:30:29
5 5.6% 81.7% 00:32:18
6 10.8% 90.5% 00:40:43
7 3% 70.6% 00:43:36
8 2.2% 59.5% 00:56:03
9 2% 62.7% 01:17:39
10 3.4% 67.5% 01:24:58

HTK: Table 4 presents the results of the evaluation metrics obtained
by the library in the LaPS Benchmark corpus.

Table 4. Configurations of HTK Library and La

PS Benchmark Corpus

ID Type WER SER Duration

1 HVite (2-gram) 94.95% 100% 00:05:19
2 HVite (2-gram) 92.18% 100% 00:05:33
3 HVite (2-gram) 93.32% 100% 00:05:25
4 HVite (2-gram) 92.35% 100% 00:05:21
5 HVite (2-gram) 93.49% 100% 00:05:25
6 HVite (2-gram) 95.44% 100% 00:05:21
7 HVite (2-gram) 93.00% 100% 00:05:25
8 HVite (2-gram) 92.83% 100% 00:05:19
9 HVite (2-gram) 92.83% 100% 00:05:18
10 HVite (2-gram) 92.18% 100% 00:05:17

Comparing the results obtained by the CMUSphinx library in the
same corpus (Table 2), the results of Table 4 were insignificant. In
addition, when comparing the phrases of the test files with the phrases

52251 Lucas Debatin et al. Offline continuous speech recognition for mobile devices

generated by the library, it turns out that all phrases have at least one
error. The average training duration was 5 minutes and 22 seconds for
each setting. Table 5 presents the results obtained in the Federal
Constitution corpus.The values obtained in Table 5 presented better
results, but worse than WER of 14%, which is one of the
requirements of this work. In addition, all generated sentences have
one or more errors. The average training time was 2 hours and 8
minutes for each setting.

Table 5. Configurations of HTK Library and Federal
Constitution Corpus

ID Type WER SER Duration

1 HVite (2-gram) 91.98% 100% 02:08:11
2 HVite (2-gram) 89.64% 100% 02:12:03
3 HVite (2-gram) 86.17% 100% 02:09:21
4 HVite (2-gram) 86.47% 100% 02:06:09
5 HVite (2-gram) 84.97% 100% 02:06:32
6 HVite (2-gram) 93.85% 100% 01:58:51
7 HVite (2-gram) 88.60% 100% 02:03:42
8 HVite (2-gram) 83.84% 100% 02:08:38
9 HVite (2-gram) 82.47% 100% 02:11:46
10 HVite (2-gram) 84.21% 100% 02:19:31

The HTK library had the worst results. With any configuration and in
both corpora, it was not possible to reach a WER below 80%. The
poor results obtained by HTK are justifiable because this library is
just a toolkit for building and manipulating HMM. For the recognition
of continuous speech and extensive vocabulary, Julius, the Speech
Recognition Engine of HTK, can be used.

Kaldi: Table 6 shows the values obtained by each Kaldi library
configuration in the LaPS Benchmark corpus.

Table 6. Configurations of Kaldi Library and La

PS Benchmark Corpus

ID Type WER SER Duration

1 MLP 5.05% 41.67% 00:49:17
2 RNN 2.61% 21.67% 02:24:06
3 RNN 6.19% 41.67% 14:18:37
4 RNN 8.14% 51.67% 92:54:37
5 N/A N/A N/A N/A
6 tri3b 5.05% 40% 00:23:41
7 mono0a 7.17% 38.33% 00:45:13
8 tri1 6.68% 43.33% 00:42:41
9 tri1 5.37% 31.67% 00:38:46
10 tri1 6.51% 41.67% 00:40:57

Table 6 shows that the use of Artificial Neural Networks (ANN)
presents the best results. However, one problem is the higher time
spent in training. Therefore, the ID 5 configuration was not trained
because it would take more than 100 hours. The best results were
obtained using Recurrent Neural Network (RNN) and Multilayer
Perceptron (MLP). In addition, classes tri3b and tri1 also showed
good results. Table 7 presents the results of the library in the Federal
Constitution corpus.

Table 7. Configurations of Kaldi Library and Federal
Constitution Corpus

ID Type WER SER Duration

1 MLP 1.44% 46.03% 07:45:17
2 RNN 0.98% 41.27% 26:38:27
3 RNN 0.93% 38.89% 166:47:14
4 N/A N/A N/A N/A
5 N/A N/A N/A N/A
6 tri3b 1.48% 46.03% 01:50:37
7 tri1 1.61% 49.21% 01:54:36
8 tri1 1.34% 38.89% 02:02:11
9 tri1 1.75% 46.03% 05:32:35
10 tri1 1.80% 48.41% 07:09:14

Examining the table 7, it can be observed that only the three trainings
for the ANN were generated, since the time spent training for ID 3
exceeded 150 hours. Therefore, in this case only three configurations
were selected, not four like the other libraries. The use of RNN and
the tri3b and tri1 classes presented the best results of the evaluation
metrics.

Desktop Performance Analysis: The tests were performed only on a
desktop computer, as configured in Table 1. These tests were
performed without internet connection, with no software running in
parallel, and only using the corpora test files. Table 8 shows the
results obtained in the LaPS Benchmark corpus. In the Figure, the
"top" command, by default, displays the percentage of a single CPU,
i.e. multi-core computers can have percentages higher than 100%.For
each library, the best configuration was selected. The CMUSphinx
and Kaldi libraries achieved the best results, but the Kaldi library
stood out because it obtained: (i) the lowest WER percentage; (ii) the
lowest average processor usage; and (iii) the lowest average memory
usage.

Table 8. Performance of Libraries in LaPS Benchmark Corpus

Library ID Duration xRT Processor

(average)
Memory(ave
rage)

CMUSphinx 2 00:00:11 0.040 97.50% 0.50%
CMUSphinx 3 00:00:19 0.069 98.09% 0.50%
CMUSphinx 8 00:00:36 0.130 98.69% 0.50%
CMUSphinx 9 00:01:01 0.221 99.20% 0.50%
HTK 2 00:02:44 0.594 99.17% 0.60%
HTK 4 00:02:43 0.590 98.68% 0.60%
HTK 9 00:02:44 0.594 99.00% 0.60%
HTK 10 00:02:41 0.583 98.79% 0.60%
Kaldi 1 00:02:18 0.500 98.26% 0.43%
Kaldi 2 00:03:31 0.764 97.79% 0.39%
Kaldi 6 00:00:14 0.050 91.92% 0.20%
Kaldi 9 00:00:19 0.069 96.73% 0.21%

Table 9 presents the performance results obtained by using the
Federal Constitution corpus. In order to evaluate the results in this
corpus, the best configuration of each library was selected. It can be
seen that the CMUSphinx and Kaldi libraries achieved the best
results. In this corpus, the Kaldi library also stood out, obtaining: (i)
the lowest percentage WER; (ii) the smallest value xRT; (iii) the
lowest average processor usage; and (iv) the lowest average memory
usage.

Table 9. Performance of Libraries in Federal Constitution Corpus

Library ID Duration xRT Processor

(average)
Memory
(average)

CMUSphinx 3 00:02:29 0.047 99.27% 0.50%
CMUSphinx 4 00:04:06 0.077 98.35% 0.50%
CMUSphinx 8 00:04:29 0.084 99.07% 0.50%
CMUSphinx 9 00:07:45 0.146 98.92% 0.50%
HTK 3 01:26:02 1.620 99.14% 0.70%
HTK 5 01:25:52 1.617 99.20% 0.70%
HTK 8 01:25:58 1.619 99.10% 0.70%
HTK 9 01:26:07 1.622 98.52% 0.70%
Kaldi 3 02:39:45 3.008 98.11% 0.95%
Kaldi 6 00:01:30 0.028 94.76% 0.20%
Kaldi 8 00:01:54 0.036 97.50% 0.37%

According to Tables 8 and 9, the libraries demanded more processing
resources than RAM. In addition, the use of ANN presented the best
results (2.61% in the LaPS Benchmark corpus and 0.93% in the
Brazilian Constitution corpus). On the other hand, it requires a great
computational cost, in some cases exceeding two hours of processing,
thus compromising its use in mobile devices. Still according to Table
8 and Table 9, the best results were obtained from the Kaldi library.
However, the implementation of this library on mobile devices was
unsuccessful. Therefore, the CMUSphinx library, which have results
very similar to those of the Kaldi library, was chosen.

52252 International Journal of Development Research, Vol. 11, Issue, 11, pp.52248-52256, November, 2021

PERFORMANCE ANALYSIS ON MOBILE DEVICES

For the tests on mobile devices the CMUSphinx library was used. The
tests were performed on 11 devices, with different versions of
Android (upper 4.1) and hardware configurations. In each device it
was requested to: (i) disable any form of internet connection (wi-fi,
mobile data); (ii) remove the cell from the power supply, if there was
any; (iii) verify that the device had at least 30% battery; and (iv) close
all open applications. All tested mobile devices have a low initial
processor usage and sufficient memory to perform the tests. Table 10
shows the configurations of the mobile devices used in the tests.

Table 10. Configurations of Mobile Devices

Device Android Hardware Configuration

Samsung
SM-T110

4.4.2 Processor: Dual-Core of 1.2 GHz
RAM Memory: 1 GB

Samsung
SM-J200BT

5.1.1 Processor: Quad-Core of 1.3 GHz
RAM Memory: 1 GB

Quantum Fly 6.0 Processor: Deca-Core of 2.1 GHz
RAM Memory: 3 GB

Samsung
SM-J500M

6.0.1 Processor: Quad-Core of 1.2 GHz
RAM Memory: 1.5 GB

LGE LG-
M700

7.1.1 Processor: Octa-Core of 1.4 GHz
RAM Memory: 2 GB

Xiaomi
Redmi 4X

7.1.2 Processor: Quad-Core of 1.4 GHz
RAM Memory: 3 GB

Motorola
Moto Z (2)

8.0.0 Processor: Octa-Core of 2.35 GHz
RAM Memory: 6 GB

Motorola
XT1635-02

8.0.0 Processor: Octa-Core of 2 GHz
RAM Memory: 3 GB

Motorola
Moto G (5S)

8.1.0 Processor: Octa-Core of 1.4 GHz
RAM Memory: 2 GB

Samsung
SM-J610G

8.1.0 Processor: Quad-Core of 1.4 GHz
RAM Memory: 3 GB

Xiaomi Mi
A2

9.0.0 Processor: Octa-Core of 2.2 GHz
RAM Memory: 4 GB

Table 118 shows the results obtained during the execution of the LaPS
Benchmark corpus on mobile devices. On all devices, it is possible to
notice: (i) the average memory usage was below 70 MB; and (ii) the
average processor usage was below 50%. It is important to note that
the processing of the test files by the library does not consume the
device's battery resources. Table 129 presents the results obtained
during the execution of the Federal Constitution corpus. According to
Table 12, it can also be seen that in all devices: (i) the average
memory usage was below 80 MB; (ii) the average processor usage
was below 50%; and (iii) the processing of the test files did not
consume the battery resources of the devices. It is also important to
show the behavior of the variable xRT, which computes the
processing time of the audio file. Table 13 shows a comparison
between the processor usage and the xRT value obtained for each
corpus. This table was developed based on the hardware
configurations of the devices (Table 10) and the xRT values of Tables
11 and 12. Based on Table 13, it can be seen that the xRT values are
low in almost all processors, that is, virtually all of them have
obtained values below 1. However, the time for processing each audio
of the test corpora in a Dual-Core 1.2 GHz processor was high
because this processor is old and has only two cores with only 1.2
GHz each. The values of xRT obtained with an Octa-Core 2.2 GHz
processor were similar to the values obtained in the analysis of
performance in the desktop computer.

DISCUSSION

The tool implemented in this work presents two versions: desktop and
mobile. The main goal of this tool was to find the best off-line
solution for continuous speech recognition. The desktop version was
useful to find the library that had the best performance results in the
tests performed on a desktop computer.

8All test files of the corpus were run, with duration of 00:04:36 (276 seconds).
9In section 3 it was described that for this corpus only 30 test files were used,
with duration of 00:12:32 (752 seconds), thus changing the calculation of the
factor xRT.

In this version, the xRT value was calculated and information about
processor and memory usage was collected. The Kaldi library
achieved the best results, but it was not possible to implement it on
mobile devices due to permission restrictions. For this reason, the
CMUSphinx library was used, which obtained results similar to
Kaldi. The HTK library presented the worst results, with the best
WER value obtained being higher than 80%. The results obtained in
the analysis of the performance of the desktop version demonstrated
that the use of ANN in the continuous voice recognition requires a
high computational cost but presented the best results. The best cost-
benefit ratio between accuracy and performance was obtained by
applying HMM. The tests were performed on several mobile devices.
In this way, it can be observed that in all tested versions of Android,
the HMM library has successfully performed continuous offline
speech recognition. It is important to note that the latest versions of
Android have processed the test files in real time. This was possible
due to the modern hardware configurations of the mobile devices.
Experiments were carried out with two speech corpora, one with
several speakers and the other with only one speaker. The corpus with
only one speaker presented the best results for the WER rate. Thus, it
can be concluded that the presence of several speakers is a complexity
factor of continuous speech recognition.

Finally, Table 14 presents the comparison between the selected works.
They encompass the state of the art of the research problem, with the
best solution found in that article. Only the work related to identifiers
(Pakoci et al., 2017, 2018) presented error rate results in offline mode
for mobile devices. Our solution uses the main acoustic and language
techniques for the implementation of the solution, as it can be seen in
Table 14. This work is the state-of-the-art for Brazilian Portuguese
language, since there are no works with the same objective for this
language. It is also possible to remark the average WER obtained in
the articles as the state-of-the-art is 14.01% for several languages. In
this work, the WER obtained for Brazilian Portuguese was better than
this average, both for the corpus with one speaker (3.2%) and for the
corpus with several speakers (9.6%). Some of the limitations
presented by Pakoci et al. (2017, 2018) are the lack of comparison
metrics for the optimization of processor, memory and battery usage
in mobile devices. These metrics, presented in our approach, are
among those that can be considered very relevant to the context of the
solution. Moreover, these works present the use of DNN (MLP and
RNN) implemented through the Kaldi library, which require a high
computational cost. In both works two voice corpora are used: (i) 154
hours, with 87 thousand statements, with an average of 15 words
each, with 21 male announcers and 27 female announcers; and (ii) 61
hours, with 170 male and 181 female speakers. With a corpus of text
containing about 1.5 million words. We can also highlight the work
from Abushariah (2018) which presented results in the online mode
with WER of 2.68%. It used the same techniques and the same library
of our work, although it was used for an online solution. In addition,
there was a significant difference in the size of the corpus speech for
training. While we had limitations on corpora size, Abushariah
(2018)presented a solution based on training in a much larger corpus,
composed of 41,005 sentences. The authoranalysedspeech data
collected from 36 native speakers from 11 different Arab countries,
summing about 45 hours of speech. It is also worthwhileto mention
Georgescu et al. (2017), which presented aDNN, from Kaldi library,
as a solution for the WER reduction. The author did not use data in
offline mode and on mobile devices. Three corpora were used: (i) 100
hours in a quiet environment; (ii) 28 hours of talk shows (affected by
noise) and news (clean speech); and (iii) 103 hours of talk time. Two
corpora of texts, including 315 million words collected from news
sites and 40 million words of meetings transcripts, were analysed.

CONCLUSIONS AND FUTURE WORK

This research had as its main objective the development of offline
continuous speech recognition for mobile devices in the Brazilian
Portuguese language. Also, checking the performance analysis on
various mobile devices with the Android operating system.
Performance analysis has demonstrated that it is possible to run the
CMUSphinx library in applications for real-time speech recognition.

52253 Lucas Debatin et al. Offline continuous speech recognition for mobile devices

Table 10. Configurations of Mobile Devices

Device Android Hardware Configuration

Samsung SM-T110 4.4.2 Processor: Dual-Core of 1.2 GHz
RAM Memory: 1 GB

Samsung SM-J200BT 5.1.1 Processor: Quad-Core of 1.3 GHz
RAM Memory: 1 GB

Quantum Fly 6.0 Processor: Deca-Core of 2.1 GHz
RAM Memory: 3 GB

Samsung SM-J500M 6.0.1 Processor: Quad-Core of 1.2 GHz
RAM Memory: 1.5 GB

LGE LG-M700 7.1.1 Processor: Octa-Core of 1.4 GHz
RAM Memory: 2 GB

Xiaomi Redmi 4X 7.1.2 Processor: Quad-Core of 1.4 GHz
RAM Memory: 3 GB

Motorola Moto Z (2) 8.0.0 Processor: Octa-Core of 2.35 GHz
RAM Memory: 6 GB

Motorola XT1635-02 8.0.0 Processor: Octa-Core of 2 GHz
RAM Memory: 3 GB

Motorola Moto G (5S) 8.1.0 Processor: Octa-Core of 1.4 GHz
RAM Memory: 2 GB

Samsung SM-J610G 8.1.0 Processor: Quad-Core of 1.4 GHz
RAM Memory: 3 GB

Xiaomi Mi A2 9.0.0 Processor: Octa-Core of 2.2 GHz
RAM Memory: 4 GB

Table 11. Performance of LaPS Benchmark Corpus

Device Duration xRT Battery Processor (average) Memory (average)

Samsung SM-T110 01:53:27 24.6 0% 32% 17.49 MB
Samsung SM-J200BT 00:01:11 0.257 0% 25% 27.22 MB
Quantum Fly 00:00:41 0.149 0% 45% 67.32 MB
Samsung SM-J500M 00:00:46 0.167 1% 25% 41.45 MB
LGE LG-M700 00:00:36 0.130 0% 21% 63.05 MB
Xiaomi Redmi 4X 00:00:34 0.123 0% 25% 50.43 MB
Motorola Moto Z (2) 00:00:28 0.101 0% 6% 21.98 MB
Motorola XT1635-02 00:00:27 0.978 0% 1% 53.39 MB
Motorola Moto G (5S) 00:00:43 0.156 0% 27% 43.81 MB
Samsung SM-J610G 00:00:43 0,156 0% 3% 30,96 MB
Xiaomi Mi A2 00:00:10 0,036 0% 12% 27,30 MB

Table 12. Performance of Federal Constitution Corpus

Device Duration xRT Battery Processor(average) Memory(average)

Samsung SM-T110 02:44:02 13.08 1% 33% 21.52 MB
Samsung SM-J200BT 00:04:51 0.387 1% 20% 32.97 MB
Quantum Fly 00:02:55 0.233 1% 46% 74.97 MB
Samsung SM-J500M 00:05:05 0.406 0% 24% 38.31 MB
LGE LG-M700 00:02:11 0.174 1% 36% 59.80 MB
Xiaomi Redmi 4X 00:04:00 0.319 1% 25% 51.55 MB
Motorola Moto Z (2) 00:00:28 0.037 0% 22% 26.67 MB
Motorola XT1635-02 00:01:36 0.128 1% 9% 55.47 MB
Motorola Moto G (5S) 00:01:58 0.157 1% 28% 53.04 MB
Samsung SM-J610G 00:02:17 0.182 0% 20% 33.28 MB
Xiaomi Mi A2 00:00:32 0.043 0% 4% 30.51 MB

Table 13. Comparative Between Processor and xRT Value

Processor xRTLaPS Benchmark Corpus xRT Federal Constitution Corpus

Dual-Core of 1.2 GHz 24.66 13.08
Quad-Core of 1.2 GHz 0.167 0.406
Quad-Core of 1.3 GHz 0.257 0.387
Quad-Core of 1.4 GHz 0.123 0.319
Quad-Core of 1.4 GHz 0.156 0.182
Octa-Core of 1.4 GHz 0.130 0.174
Octa-Core of 1.4 GHz 0.156 0.157
Octa-Core of 2 GHz 0.978 0.128
Octa-Core of 2.2 GHz 0.036 0.043
Octa-Core of 2.35 GHz 0.101 0.037
Deca-Core of 2.1 GHz 0.149 0.233

52254 International Journal of Development Research, Vol. 11, Issue, 11, pp.52248-52256, November, 2021

However, this can only be done in devices with hardware
configurations with higher computational resources, since they
presented a low score in xRT. For devices with hardware
configurations with limited computational resources, it is only
possible to use this library in applications that perform interview
audio transcriptions, for example. All the tests were performed
without internet connection, seeking for emphasizing that this
continuous speech recognition can work successfully in environments
without internet. The tests corroborated the feasibility of
applyingspeech recognition of the Brazilian Portuguese language in
offline mobile devices. The main contributions of this work are: (i)
the implementation of an off-line speech recognition solution for the
Brazilian Portuguese language; (ii) the development of a tool for
performance analysis of the CMUSphinx, HTK and Kaldi libraries on
a desktop computer; and (iii) the development of a tool for analyzing
the performance of the CMUSphinx library on various mobile devices
running the Android operating system. It is worth mentioning that all
tools developed in this work are available free of charge in GitLab,
serving as a basis for future work.

In addition, it is also possible to highlight as a contribution of the
work the comparison carried out between the training configurations
for each library in order to locate the best evaluation metric. This
speech recognition implementation can be used in software and
applications: (i) that assist in the communication of people with
disabilities; (ii) companies that streamline the work of employees; and
(iii) that require this function in areas without connection to the
Internet. The performance analysis tool can be used to measure the
required performance of a new corpus speech. Throughout the
development of this work, some possibilities of improvement and
continuation could be identified from future research, which includes:

 Implementing the Kaldi library on mobile devices without the
need for "superuser" permission, so it will be necessary to
compile the library files in a different way;

 Carrying out a study on how to reduce the computational cost
(processing) required by ANN that perform continuous speech
recognition to be applied on mobile devices. For this, it will
be necessary to find and implement ANN that performs better;

 Using intelligent software agents to get the training settings
with the best WER rate. For this, it will be necessary to
perform the implementation of this agent and configure it to
change the settings of the libraries;

 Analyzing the performance of offline speech recognition on
mobile devices with the IOS operating system. For this, it will
be possible to use the same library used in Android.

ACKNOWLEDGMENT

We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior) for financial support to carry out this research work.

REFERENCES

Abushariah, MA 2018. TAMEEM V1.0: speakers and text
independent Arabic automatic continuous speech
recognizer.International Journal of Speech Technology,
20(2):261-280.

Bauer MW, Aarts B (2000). Corpus construction: a principle for

qualitative data collection. In: Martin W. Bauer and George
Gaskell (eds.) Qualitative researching: with text, image and
sound. London, UK: Sage. pp. 19-37.

Coppin B (2004) Artificial Intelligence Illuminated.Sudbury, USA:
Jones & Bartlett Learning.

DebatinL, Haendchen Filho A, Dazzi, RLS (2018). Offline Speech
Recognition Development: A Systematic Review of the
Literature. Proceedings of the International Conference on
Information Systems, San Francisco, USA, pp. 551-558.

FalaBrasil (2019). Grupo Falabrasil - UFPa. [Online].
http://www.laps.ufpa.br/falabrasil

Ferreira MVG, Souza JF (2017). Use of Automatic Speech
Recognition Systems for Multimedia Applications. Proceedings
of 23rd Brazillian Symposium on Multimedia and the Web
(Webmedia),Gramado, Brazil, ACM, pp. 139-176.

Georgescu A, Cucu H, Burileanu C (2017). SpeeD's DNN approach
to Romanian speech recognition.Proceedinsgs of the
International Conference on Speech Technology and Human-
Computer Dialogue (SpeD), Bucharest, Romania, IEEE, pp. 1-
8.https://doi.org/10.1109/SPED.2017.7990443.

Georgescu AL, Pappalardo A, Cucu H, Blott M (2021). Performance
vs. hardware requirements in state-of-the-art automatic speech
recognition. Journal of Audio Speech Music Processing,28.
https://doi.org/10.1186/s13636-021-00217-4

Grossman RL (2009). The Case for Cloud Computing.IT
Professional, 11(2):23-27.

Gupta K, OwensJD (2011). Compute & memory optimizations for
high-quality speech recognition on low-end GPU
processors.Proceedings of the 18thInternational Conference on
High Performance Computing, pp. 1-10, https://doi.org/
10.1109/HiPC.2011.6152741.

Hearst, MA (2011). ‘Natural’ search user interfaces.Communications
of the ACM, 54(11):60-67.

Huang X, DengL (2010). An overview of modern speech
recognition.In Handbook of Natural Language Processing,
2nded. London, UK: Chapman and Hall/CRC, pp. 339-366.

Jurafsky D, MartinJH (2008). Speech and Language Processing: An
Introduction to Natural Language Processing, in Computational
Linguistics, and Speech Recognition, 2nded. Upper Saddle
River, USA: Prentice-Hall.

Kipyatkova IS, KarpovAA (2017). A study of neural network Russian
language models for automatic continuous speech recognition
systems.Automation and Remote Control, 78(5):858-867.

Laleye FAA, Besacier L, Ezin EC, Motamed C (2016). First
automatic fongbe continuous speech recognition system:
Development of acoustic models and language models.
Proceedings of the Federated Conference on Computer Science
and Information Systems, Gdansk, Poland, pp. 477-482.

LeeK, Hon H, Reddy R (1990). An Overview of the SPHINX Speech
Recognition System, IEEE Transactions on Acoustic Speech,
and Signal Processing, 38(1):35-45.

Meyer J, Dentel L, Meunier F (2014). Speech Recognition in Natural
Background Noise. PLOS ONE, 9(1). https://doi.org/10.1371/
annotation/012d9419-8135-40ab-8c81-ce46e8e708d0

Naing HMS, Hlaing AM, Pa WP, Hu X, Thu YK, Hori C, Kawai H
(2015). A Myanmar large vocabulary continuous speech

Table 14. Comparative Between the Related Works and This Paper

Reference Acoustic Model Language Model Library Idiom WER

Abushariah (2018) HMM 1, 2 and 3-gram CMU Sphinx Arabic (11 countries) 2.68%
Georgescu et al. (2017) RNN and HMM 1, 2 and 3-gram Kaldi Romanian 4.5%
Kipyatkova and Karpov (2017) HMM RNN-LM and 3-gram HTK Russian 22.87%
Laleyeet al. (2016) "monofone" and "trifone" from Kaldi’s library 3-gram (SRILM tool) Kaldi Fongbe 14.83%
Naing et al. (2015) MLP and HMM Word-base - Myanmar 15.63%
Pakoci et al. (2017) MLP and HMM 1, 2 and 3-gram Kaldi Serbian 12.01%
Pakoci et al. (2018) MLP, RNN and HMM 1, 2 and 3-gram Kaldi Serbian 7.23%
Phull and Kumar (2016) HMM and HMM 2 and 3-gram CMU Sphinx English Indian 19%
Tachbelie et al. (2014) HMM 3-gram (SRILM tool) CMU Sphinx Amharic 13.3%
Zhang et al. (2015) MLP and HMM 2 and 3-gram - Mongol 12.37%
This paper HMM 1, 2 and 3-gram CMU Sphinx Brazilian Portuguese 3.2%

52255 Lucas Debatin et al. Offline continuous speech recognition for mobile devices

recognition system.Proceedings of the Asia-Pacific Signal and
Information Processing Association, Hong Kong, pp. 320-327.

National Academies of Sciences, Engineering, and Medicine (2017).
Augmentative and Alternative Communication and Voice
Products and Technologies. In: The Promise of Assistive
Technology to Enhance Activity and Work Participation.
Washington, DC, USA: The National Academies Press.
https://doi.org/10.17226/24740.

Neto N, Patrick C, Klautau A, Trancoso I (2011). Free tools and
resources for Brazilian Portuguese speech recognition. Journal
of the Brazilian Computing Society, 17:53–68.
https://doi.org/10.1007/s13173-010-0023-1

Pakoci E, Popovic B, Pekar D (2017). Language model optimization
for a deep neural network based speech recognition system for
Serbian.Proceedings of the International Conference on Speech
and Computer, Hatfield, UK, pp. 483-492.

Pakoci E, Popovic B, Pekar D (2018). Improvements in Serbian
Speech Recognition Using Sequence-Trained Deep Neural
Networks. Artificial Intelligence, Knowledge and Data
Engineering, 1:53-76.

Phull DK, KumarGB (2016). Investigation of Indian English Speech
Recognition using CMU Sphinx.International Journal of
Applied Engineering Research, 11(6):4167-4174.

Povey D, Ghoshal A, Boulianne G, Burget L, Glembek O, Goel N,
Hannemann M, Motlıcek P, Qian Y, Schwarz P, SilovskyJ,
Stemmer G, Vesely K (2011). The Kaldi Speech Recognition
Toolkit.Proceedins of the IEEE Workshop on Automatic
Speech Recognition and Understanding, Big Island, USA,
IEEE, pp. 1-4.

SerizelR, BisotV, EssidS, RichardG (2017). Acoustic Features for
Environmental SoundAnalysis.In: T. Virtanen; M. D. Plumbley;
D. Ellis. Computational Analysis of Sound Scenesand Events,
Springer, pp.71-101.

Silva E, Baptista L, Fernandes H,Klauta A (2005). Desenvolvimento
de um Sistema de Reconhecimento Automático de Voz
Contínua com Grande Vocabulário para o Português
Brasileiro.ProceedingsoftheWorkshop em Tecnologia da
Informação e Linguagem Humana, São Leopoldo, Brazil, pp.
2258-2267.

Soni VD (2019). Speech Recognition: Transcription and
transformation of human speech. International Journal on
Integrated Education, 2(5):257-262.

Tachbelie MY, Abate ST, Besacier L (2014). Using different
acoustic, lexical and language modeling units for ASR of an
under-resourced language – Amharic.Speech Communication
56(1):181-194.

Tevah RT (2006). Implementação de um sistema de reconhecimento
de fala contínua com amplo vocabulário para o português
brasileiro.MScdissertation, COPPE, UFRJ, Rio de Janeiro,
Brazil.

Yu D, Deng L (2015). Automatic Speech Recognition: A Deep
Learning Approach. London, UK: Springer.

Zhang H, Bao F, Gao G (2015). Mongolian speech recognition based
on deep neural networks.Proceedings of the 14thChinese
Computational Linguistics and Natural Language Processing
Based on Naturally Annotated Big Data,Guangzhou, China,
pp.180-188.

52256 International Journal of Development Research, Vol. 11, Issue, 11, pp.52248-52256, November, 2021
