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INTRODUCTION

Let F be a function with a definition domain, the set T, and the functional values are the set F(t) c x for Vt € T.

We denote by tHEFT(t)the cartesian product of the family the sets F (t) indexed by the elements of the set T, B - a set of sets, K - a

UTIF

set with or without relationships and operations. Let R be a function with a definition domain TEBLET

of K.
Definition 1. Generalized relations R of type (B, K) between sets of elements F(t),t € T,T € Bis the triad

(t)and functional values

UIIF

TEBtET F(), KR

IfF(t)=0 foranyt€ T,TE€B,or K=0, thenR =0.
Private cases of such a generalized relation are:

1) If K is a non-empty set and T € B rearranged sets, then the generalized relation coincides with the generalized relation of
Purdea [1].

2) If K is the single interval [0,1] with the known addition, subtraction, multiplication, ordinance, and if B = T, T = {t, t,}
the generalized relation coincides with the fuzzy relation defined by Zade in [2].

3) If instead of the single interval K =[0,1] set K =L - a partially ordered set, we obtain the relations examined by Gogens in
[2].

4) L - the relations defined by Salij in [3], are obtained at K =L, L - lattice.

IfF (t)=F for Vte€ T, T € B the generalized relation is called homogeneous.
Let B1 be a family of sets T; © T, T € B and R1 is a restriction of R.

Thetriadpry, cp (B, K) = Jie

TE€BLET,CT F(t,), K, R is called projection.
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If T1 =T for VT € B, the projection is called non-proprietary, but if T;T; # T and T € B for some - own.

Let B= {T} and T;= {t} c T, then Pry, (B, K) coincide with the restriction of the function R on the base set F (t).
Let's 0 = {0, /T € B} be a family of bigections g, : T — T, for at least one T € B is g not the same.

The generalized relation R we have: ((Xterrep k) € R © ((Xsterrenr) € ROVEET

o is called o-inverse relation of R. If K is a non-empty set and P reordered sets, this definition coincides with the same definition
of Purdea [1] from which is obtained as a private case (i, j), the transposition of Penzow [8].
Let the binary operations V (defined on subsets) and * be defined on the set K, such that:

. .. vV %4
1. The summary of the Birkhoff law [7] is in force for V: ij€® a; ] c oY

d = Ll.’cbi, ®; , - a plurality of indices
From this law follows Idempotent, Commutative and Associate for V - Birkhof [7]
2. * is associative and has 0 and 1;

3. the two complete distributive laws link V and *
axVib; =Vi(axb;),Va; xb =V(a; *b)

14 Vb _ V(a;xby)

equivalent to equality [2], i e o *j cw = (.]) € (@, ®)

p. 152, proposal 2);
4.0Vk=kand 1Vk=1

These conditions are satisfied, for example, for K - a complete structured semigroup (Goghen, [2]).
Let me
u I

_( VU 1 _ _
R, = (Ti € Bt € FE).K, Ri) and R; = (Tj €Bt, € F () K, Rj) T,NT; = ¢

Tk Tk s
are two generalized relationships. We denote: W oR; 7 VRic R , X RioR; 7 k=1ij

three non-intermittent sets for which WR ;U VRTl"" Rj UX;L"" rj= T k=10

G - a family of surections
gRl'DR]':T — TRL'DR]' cT= TLUT € BR i.R; = BRLUBR]

T T
g( )ﬂg( RLR) ( R)n'g( RLR])=¢’ (WRiljRi)ng<XRiRj)=¢'k
=i,j,g< )ﬂg( ) .9 VR];lR')=‘9<VRiJ;R' , .
H - the subfamily of G formed by the restrictions hRi R of gon;
-Rj

T; Tj T;
We R].UWIRL-ER].UV UV PRL R hR .Rj (T UT) C eg;iluRj(q)'q € TRiaRJ-

It is supposed q € qu 'y (g) , to not reduce the community.

Definition 2. The product R;, R; of the type (G, H, B) of the relations R1 and Rj is determined by the equation:

' 4
Rj. R; = {[(Cp)pEPRioRj ke Ry oRj] [k = t <kRi * Ke,) ’(xt)teg (TR oR; /PR; R /A(R Ry )>}

Where/ 1/
A(R;, R;) = [kg, = Rs(x,,)ts € Ty, s

=1j; (gRiaR].(tk) IR; r; t) = x, = xtl) (gRlR (t) =p € Py, R; =x=c,€C,TE BRL-BR].)]
(We accept:) Tg, , = Pp, .. = k = kg, * kg,
LRj LRj i j

If for any p we have C, = ¢, then R, R; = ¢
In the case of B = {T} and T{ty, ¢, }, the product R;, R; coincides with the work of Goghen [2], p. 161.
k, lf kl = kz = k

Let T € B multitudes be rearranged, and K is a non-empty set: k; * k, = { y, ifky %k, ’
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then definition 2 coincides with definition 1 given by Purdea in [1].

. Tj
Thecase K = {k,y}L,k=1,y=0,X ;fR My J Ri- isomorphic coincides with definition 8 given by Nemety [9].
LRj o

A particular case from the Purdea definition is the definition of (r, s) - a product of two inhomogeneous n - relationships
introduced in [10] by Topencharov, and for the homogeneous n relations introduced in [8] by Penzov.

Ri = (U IIF(ti),K,Ri), TinTj L0
Ti € Biti € Ti
i,j =1,2,3,i # j- three generalized relations. We continue IR, r, and IR, O
TUTUT; =T € B = B{UB,UB; ¢ gg, p,:T = Tg, p, Tk, ¢, © T'gRlaRz(t:") =t3,t3 € T3,9r, p,: T = Tr, ;0 Tk, g,

CT,gr, p,(t) =t1,t1 €Ty

Let be given

and apply to the products (R, R,),R; andR;, (R, R3)

gRlu(RzuR3) = ‘gle,Rzand g(RluRz)uRs = gRZ.,R3

We mean:

9R1.ry) . Rs (TRlaRz) - T(RlaRZ)nRy

IR Ry g, (TRzuRs) = TRy v, gy

We assume the fulfillment of the important conditions:

/2/9(R1°R2)‘,R309R1QR2 = gR1B(R2BR3)chz°R3;

I3/Xg: o NXR2 = ¢

R2 R3

Then the following applies
Theorem: (R; R;).Rs = Ry, (R;.R3)
Proof:

|4
K(ryory)or; = (R1° Ry) © Ry ((Cp) ) ¢ (kR1°R2 * kR3)/(xt)teg(_R11°R2)oR3 (T(R10R2)0R3\P(R10R2)0R3)/A((Rl °R;) o R3)

PEP(R1oR3)oR3

|4
= ‘;(tl(le * kRg) * kR3>/ (xtl)tleg_l /lél(R1 o RZ) ,

(R1°R2)°R3(T(R1°R2)°R3 \P(R1°R2)°R3)

(€2 /AR,  R,)

(R1°R2)°R3(T(R1°Rz)°R3 \P(R1°R2)°R3)

v
= ler, * (ke, * k, )]

/((xt')teg(_RlzoR3) ° g};llc(chR3)(TRlc(RzoRg)\PRl(R2°R3))/A(Rl ° Rz)>’ (kR3 =R; (xtR3) r 1 9(R1oR3)oR3 (t)
3

tp3€

= 9(R1oR5)oR3 (tl)> = Xgy = Xty (g(R10R2)0R3 (t) =D € P(ryory)ors = Xt = Cp € CIZ)
Vv -1
= t[le * (kRz * kR3)]/ ((xt)teg(_RlzoR3) ° gRlo(RzoR3)(TRlo(RzoR3)\PRlo(RZoR3))/A(RZ ° R3)>,

kg, = Ry (xtR1)t €Ty, [gRloRz (ti) = Gryor, (t) = x¢p, = xtl] s IRyor,(t) = € Ppiog, = X; = ¢ € Cf
1

R

-V {le ) [tVZ (X kR3)j)]}/<(Xt2)tzeg—1

(R2°R3)°R3(TR20R3 \PR20R3)>
/ARy °R3), (xt)tEgEl(R R (TR1(R2°R3)\PR1(R2°R3))/A((Rz ° R3)) , le =Ry (xtl) ’ gRlo(R2°R3)(tk)
1(R2°R3) T1

tie
=, JRyo(Ryers) (E1) = Xty = X)) 8Rye(RyoRs) (D) = P € PRroo(ryory) = X¢ = Cp € Cp

%4
= t(kR1 * kR2°R3)/ ((xt)tegEiO(R2°R3)(TRlo(RzoR3)\PR1°(R2°R3))/A(Rl' Ry o R3)> = leo(R20R3) ,

which we had to prove.
In [6, 7, 8] we use equations 1, 2, 3, the associativity of K regarding * and the summary distribution laws concerning V.
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The theorem we examined is also true for intersectingTy, T,, T5. Instead of Ty, T,and T3, the sets Ty = (Ty,1), T, = (T,,2),T; =
(T3, 3) which do not intersect and are equal to respectively T;, T, and T;.

For the generalized relations Ry, R, and R,, R3, the functions gg, g, and gg, g, are for VT are bijections and

gRl,Rz (WRT11°R2) = WRT11BR2’9R1,R2 (VRT11BR2) = gRZ,R3 (‘/RTSGR3) = ‘/RzzaRg’ngaR3 (WRTzzﬂRg) - gRZ,R3 (X}‘:;JQ)
= WRZZGRg"gRl,Rz (X;LRZ) = WizuRg"gRl,Rz (WRT;ZGRZ) ~ WRzzuRg

kg, = Rp(x)t €T, = {1,

Ifx; =xp =2, = xp'gRlnRz(l) = IR, p, (m)'ng,R3 n) = IR, g, ), X, = Xs, = xs3'gR1aR2(Sl) = IR, p, (s2) = 9r; g, (s2) =

9Rr; g, (s3),

and 0 otherwise.

Under these conditions

kryor, = kg, * kg,/ ((xt)tegEioRz (TRloRz\P(R1°R2))/A(R1' Rz)) = le/((xt)t ET) v Krior, = Kp,

Similarly displayed kg, Ry = kg,. It follows:
Theorem R2. The relations satisfying the above conditions is a right unit for R1 and a left unit for R3.

From theorem 1 and theorem 2 follows:

Theorem 3. The aggregate of the generalized relations, for which gg, Ry and gpg, R, A€ biections, is a category.
The aggregate of the generalized relations, for which gg, Ry and gg, Ry AT€ biections, is a category.

Data stored on the computer is called a database [11-12]. Typically, the data in the computer is represented in tables. Each table
represents n-ary relationship.

To extract information and to modify the content of the tables, corresponding to a set of relationships, some of the basic operations
on them are defined, namely: “Projection”, “Compound”, and “Select”.

An operation “Compound” merges two tables into a larger table:

If,Rc (A1 X oo oo XA, X BiX.....XB,)and
Sc(AX e XAp X CX e .. C,)
this compound Rand § are:
C (AX e XAy X BiX oo . By X CiX .. .. ... Xc,)
e.g. the compound consists of elements of the type:
(al, ...... Qo D1 e ey by, €y e ,Cp),
where:
(ag, con o , Ay by ety by) ER
whereas
(ag, e o ,Am, by eee i, by) €S

The operation "Projection” forms a new table ( k - ratio) from certain columns of the old table ( n - ratio) if k < n.
The operation "Select" chooses rows of the table that satisfy appropriate criteria.
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