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ARTICLE INFO  ABSTRACT 
 
 

The quadrotor is the base research on situations involving movement and air transport, being 
technological solution for applications in industrial, academic, civil and military systems. The 
research area of quadrotors lacks complete and detailed information, with bibliographic material 
of high complexity of representation, punctual approaches, incomplete models and lack of 
reference information. The present research was performed with the presentation and 
standardization of the conventions used, followed by the structuring of the mathematical 
modeling, representation of the dynamics involved in the aircraft, control of the attitude of the 
system, representation of inertia and application of the mathematical model through 
implementation in computational tool. This work presents a guide for the research of quadrotors, 
with mathematical modeling and use of computational implementation in Matlab/Simulink, using 
specific aircraft characteristics, flight references, dynamics model and attitude control, obtaining 
output data from the model. This work represents a guide for beginners, as well as a complete 
reference for the application and extension of modeling and control surveys of quadrotors. 
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INTRODUCTION 
 
Definition and Importance of Quadrotor 

 
A quadrotor is an aircraft composed of a set of four propellers, 
arranged at the ends of its wings, representing an aircraft that 
does not need a pilot to fly, being used for recreational or work 
purposes, and may suffer structural variation and have more 
than four propellers. In informal and generalist language, the 
term drone is used to refer to this type of aircraft, but it will be 
used the most commonly used term in the scientific references 
"quadrotor". The quadrotor imply a promising field of 
research, due to their applications in fields ranging from 
agriculture to military use (Federal Aviation Administration, 
2015; Kumar & Loianno, 2016) represented by increasing 
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numbers of investments. It has gained space as a technological 
solution in areas of public safety, medical emergencies, 
disaster situations, commercial deliveries, agricultural research 
and management, even in the automation of procedures, 
mentioning only some of the most cited areas. 

 
Qualifying Research 
 
In spite of the importance of this field of knowledge as a 
technological solution, the research area of quadrotors lacks 
complete and detailed information, bibliographical material is 
difficult to understand, with high complexity of representation, 
punctual approaches that do not present the dynamics involved 
in the aircraft in an open way, incomplete models and lack of 
reference information. In order to qualify the research in the 
area, a structured guide is presented, addressing the 
mathematical modeling of quadrotor, their dynamics, moment 
of inertia and the use of computational implementation in 
Matlab/Simulink, as support for scientific research in the areas 

ISSN: 2230-9926 
 

International Journal of Development Research 
Vol. 08, Issue, 06, pp.21018-21024, June, 2018 

Article History: 
 

Received 18th March, 2018 
Received in revised form 
26th April, 2018 
Accepted 14th May, 2018 
Published online 30th June, 2018 
 

Available online at http://www.journalijdr.com 

 

Key Words: 
 
 

Quadrotor, Dynamic model,  
Transport, Inertia,  
Mathematical Modelling. 
 

Citation: Ivan Paulo Canal and Manuel Martín Pérez Reimbold. 2018. “Quadrotor referenceguide: mathematical model, representation of inertia and 
computational application”, International Journal of Development Research, 8, (06), 21018-21024. 

 

         ORIGINAL RESEARCH ARTICLE         OPEN ACCESS 



of modeling and control, representing a reference guide for 
stakeholders in the area of knowledge. 
 

MATERIALS AND METHODS 
 
Conventions Used 

 
The coordinate system used for the mathematical modeling of 
the four-propeller multirotor, termed as a quadrotor, has two 
possible configurations, being "+" or "x".The "+" coordinate 
configuration has the X-axis along the arm of the motor 1 
(which rotates counterclockwise by convention), the Y
defined along the arm of the motor 2 (rotating clockwise) and 
the Z axis pointing up. The distance from a given motor to the 
axis of rotation must be the same for each. In the coordinate 
system for the "X" configuration, a rotation in the XY plane of 
45 degrees is defined in the positive yaw direction, resulting in 
the position of the X axis between the motor 1 and 2. In both 
coordinate configurations, the axis X is assumed to be the 
positive direction for vehicle movement. In the Figure 1 is
shown the quadrotor representation, conventions and 
coordinates. 
 

 
Figure 1. Quadrotor representation, conventions and coordinates. 

With adaptations (D. Hartman, K. Landis, M. Mehrer, S. 
Moreno, 2014) 

 
In aerospace systems, rotation around the X axis is often called 
roll, rotation around the Y axis as pitch and rotation ar
Z axis as yaw. The altitude increase of the aircraft can be 
agreed as a height. In Figure 1, the direction of the arrow is 
positive, using the rotation based on the right hand (thumb 
towards the axis and other fingers indicating positive rotation 
about the axis). 

 
Mathematical Modeling of Quadrotors 

 
The most commonly used multirotor platform is the four
due to its maneuverability, consisting of four individual 
thruster assemblies coupled to a rigid structure, as shown in 
Figure 1. The thrust generated by each propellant (propeller 
and motor assembly) jointly controlled, allows to perform the 
attitude control of the quadrotor. The rotors are indexed, with 
elements 1 and 3 rotating counterclockwise, while rotors 2 and 
4 rotate clockwise. Rotating movements around the X axis 
(scrolling) and turning around the Y axis (arming) are 
performed directly through the control of the propellers that 
rotate in the same direction, allowing the aircraft to fly in one 
direction through the spin control in aro
reference. The raising motion is performed by controlling the 
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The most commonly used multirotor platform is the four-rotor, 
due to its maneuverability, consisting of four individual 
thruster assemblies coupled to a rigid structure, as shown in 

t generated by each propellant (propeller 
and motor assembly) jointly controlled, allows to perform the 
attitude control of the quadrotor. The rotors are indexed, with 
elements 1 and 3 rotating counterclockwise, while rotors 2 and 

ing movements around the X axis 
(scrolling) and turning around the Y axis (arming) are 
performed directly through the control of the propellers that 
rotate in the same direction, allowing the aircraft to fly in one 
direction through the spin control in around the axis of 

The raising motion is performed by controlling the 

additive thrust of the four propellers. The rotational movement 
around the Z axis (yaw) is performed by adjusting the speed of 
the rotors acting in the clockwise and counterclock
directions (in pairs), allowing the quadrotor to rotate around 
the Z axis. Considering that the system has six degrees of 
freedom and only four actuating elements (represented by the 
four propellers) the system is sub
movement of a system that has more degrees of freedom than 
actuators must be controlled through the modeling of the 
dynamic effects of the system 
2012), being this modeling the base reference to describe and 
control the flight of the quadrotor.

 
Modeling the Dynamics of Quadrotor
 
Considering a typical implementation practitioner,
technical project reference, the practical construction of the 
propellant is a matter of adoption among the commercially 
available assemblies (Mahony
the complexity of dynamic modeling goes unnoticed, being 
disregarded in simplistic searches.
mathematical modeling of the dynamics that underlies the 
flight and control of the quadrotor is addressed. In Figure 2, 
the reference quantities for the modeling structure of the 
dynamics of a quadrotor can be visualized, where F represents 
the thrust force (we will standardize with the most usual terms 
of these quantities, in this case T), M represents the force of 
reaction in the opposite direction to the rotation of the 
propellant (standardized as Q), ω is the angular velocity of the 
propellant, r is the distance from the motor to the center of 
mass (standardized as d). The sta
nomenclatures was adopted in order to homogenize the 
standards used in the research, allowing a better understanding 
of the published studies, due to the diversity of nomenclatures 
that often confuses the reader. 
 

Figure 2. Structure of the dynamics modeling of a quadrotor. The 
nomenclatures a1, a2, a3 are the frame of reference, while b

are the structure of the quadrotor. With adaptations
(Kumar, 2017)

The thrust of the motors is the driving force that provides the 
flight and maneuvers of the quadrotor, thus integrating the 
mathematical modeling and the control project of the system. 
The thrust provides a force perpendicular to the X
the body structure, in the positive Z
state thrust force (T) generated by the rotor hovering in the 
open air (without horizontal or vertical translation), based on 
the theory of the moment can be modeled as
2012): 
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The thrust of the motors is the driving force that provides the 
flight and maneuvers of the quadrotor, thus integrating the 
mathematical modeling and the control project of the system. 

orce perpendicular to the X-Y plane of 
the body structure, in the positive Z-axis direction. The steady-
state thrust force (T) generated by the rotor hovering in the 
open air (without horizontal or vertical translation), based on 
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Ti= CT ρAri ri
2ωi

 2                  ....................................................(1) 
 
Where: T is the thrust; i is the index of rotor (1,2,3,4); Ari is 
the area of rotor; ri is the ray of rotor i; ω is the angular 
velocity; ρ is the air density; CT is the thrust coefficient. In the 
technical literature, a simplified model of pooled parameter is 
used for the coefficient of thrust, representing (1) as: 
 
Ti= CT ωi

 2                               ……………………………………(2) 
 
The coefficient of thrust CT is modeled as a constant that can 
be determined by static thrust tests through experimental 
plates, thus considering the specific characteristics of the 
propeller set used, such as propeller radius, number of blades, 
angle and other features inherent in the system. With the 
experimental constancy of the thrust constant, one has the 
advantage that the drag effect will naturally be incorporated. 
The CT constant can also be represented in some studies as 
“b”(Corke, 2013). The reaction torque (Q) acting to rotate the 
aircraft structure around the propeller in the opposite direction 
of rotation is: 
 
Qi = CQωi

2                              …………………………………..(3) 

 
Where the coefficient CQ (which depends on Ar, r, ρ) can be 
determined by static thrust tests, equivalent to CT. In other 
studies as in (Corke, 2013), CQ is presented as “k”. 
 
It is assumed that the thrust of each rotor is oriented in the 
direction of the aircraft's Z axis, although this consideration is 
not exactly perfect since the rotor starts rotating and is 
transported through the air in an effect called a rotor flapping. 
The total thrust force provided by the propeller assembly, 
which has the ability to move the aircraft in the Z-axis 
direction, can be represented by the sum of the thrust of each 
propeller (represented by the index i), writing: 
 
T=ΣTi                                           ………………………………………………………….(4) 
 
The rotation of the aircraft around the X or Y axes is 
performed through the thrust difference between the pairs of 
opposing propellers. Thus, the rotation of the aircraft around 
the X axis (angle �), also called rolling torque, can be 
represented as: 
 
�� = �� =	dT4 - dT2          …………………………………………………………(5) 

 

Equation (5) can be rewritten in terms of the speed of the 
rotors, by substitution through equation (2): 
 
�� =	dCT(ω4

2 - ω2
2)        …………………………………….(6) 

 
In a similar way to the X axis, it is written for the rotation of 
the aircraft around the Y axis (angle �), also known as 
pitching torque: 
 
	�� = 	�� =dCT(ω1

2 - ω3
2)   …………………………………(7) 

 
To represent the total reaction force around the Z axis (angle 
�), also called reaction torque or yaw torque, it is written: 
 
�� = �� = Q1 + Q3 - Q2 - Q4    ………………………………………………..(8) 

 

�� = CQ (ω1
2 + ω3

2 - ω2
2 - ω4

2)    ..…………………………(9) 

The opposite signals in equation (9) are deviating the direction 
of rotation of each propeller, allowing the aircraft to rotate 
around the Z axis with the speed control coordinated between 
the four propellers. The translational dynamics of the vehicle is 
guided by Newton's Second Law, considering the 3 reference 
axes of the aircraft (10). The rotational acceleration of the 
aircraft is given by Euler's equation of motion(Corke, 
2013),where J is a 3x3 inertia matrix, which replaces the 
inertia of the aircraft (11). The study of inertia with application 
to quadrotors will be described in more detail in a specific 
topic, differentiating and qualifying the present research. 
 

M�̇ = �
0
0
��

� − �� � �
0
0
�
�       ……………………………(10) 

 

��̇ = −ω 	.Jω + �

��
��
��
�              ……………………………(11) 

 
Based on the integration of the previous equations, the 
modeling of the forces and torques that describe the dynamics 
of the quadrotor can be structured as: 
 

�

Σ�
��
��
��

�= 	�

�� �� �� ��
0 −��� 0 ���
��� 0 −��� 0
�� −�� �� −��

�

⎣
⎢
⎢
⎢
⎡
� �
�

� �
�

� �
�

� �
�⎦
⎥
⎥
⎥
⎤

  …………….(12) 

 
In equation (12) the structure configuration of the quadrotor 
was considered in "+". In the case of a quadrotor frame 
configuration in “x”, the angular variation of 45 degrees 
should be considered, with the product dsin (45) being 
performed. 
 
Quadrotor Attitude Control Modeling 

 
To control the aircraft and its movements, a control structure is 
applied to the torques of the X, Y, Z axes. The application of a 
proportional and derivative controller, based on the error 
between the desired angle and the current one, to determine the 
desired torque in the aircraft. The proportional-controller (Kp) 
and derivative (Kd) gains can be determined by classical 
control design, considering the dynamics of the model and 
adjusting for good performance(Corke, 2013).The angular 
position of the aircraft relative to the X, Y, Z reference frame 
can be determined by an inertial navigation system. From this, 
we can write the control equations based on the torques: 
 

�� = ��(�∗ − 	�) + Kd(�̇∗ − 	�)              ……………….(13) 

 

�� = ��(�∗ − 	�) + Kd(�̇∗ − 	�)                ………………(14) 

 

�� = ��(�∗ − 	�) + Kd(�̇∗ − 	�)              ……………….(15) 

 
Where�∗ =desired angle and� =current angle, with the same 
indexes applied consecutively. It is indicated that in some 

studies that �̇∗ is commonly ignored (Corke, 2013).  

 
For the altitude control, similarly to the previous cases, it is 
written: 

 

� = ��(�∗ − 	�) + Kd(�̇∗ − 	�)+ ω0        …………………(16) 
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Where �� is the required speed of the rotor to generate a thrust 
equivalent to the weight of the aircraft. Thus, it is recalled that 
the total thrust is proportional to the speed of the rotors, 
according to equation (2). For the equilibrium condition of the 
aircraft (hovering), it is necessary that the torque generated by 
the four propellers is equivalent to the gravity action on the 
mass of the aircraft, so it is possible to write: 

 

� =
��

�
                                                 ……………………(17) 

 
In this context, it is possible to equate the previous equations 
(2 and 17) by determining the speed of the rotor to generate a 
thrust equivalent to the weight of the vehicle: 

 

����
� =

��

�
                                      ………………………(18) 

 
Determining the necessary speed to balance the weight of the 
aircraft: 

 

�� = �
��

���
                             ………………………(19) 

 

Euler's Representation of Position and Kinematics 
 
The flight of an aircraft in space, can be described by 
positioning in three dimensions and representing its position in 
the middle of a sequence of maneuvers, becomes a complex 
task. It is possible to define a sequence of rotations around the 
reference axes of the aircraft, describing the rotation about the 
Z axis, followed by a rotation about the Y axis and followed 
by a rotation about the X axis, defining a sequence of rotation 
(Z, Y, X). Each rotation is based on a right-handed system and 
a single plane. Using these three rotations, a composite 
rotation matrix can be created, which can transform the 
movement of the body structure of the aircraft (b) to the 
inertial reference system (i). The resulting rotation matrix can 
be found using the multiplication of matrices, according to 
equation (20), using the principles of Euler kinematics. In 
equation (20) the abbreviations (s, c) represent the sine and 
cosine functions, respectively. 
 

u� = �

1 0 0
0 c(ϕ) s(ϕ)
0 −s(ϕ) c(ϕ)

� �
c(θ) 0 −s(θ)
0 1 0

s(θ) 0 c(θ)
� �

c(ψ) s(ψ) 0
−s(ψ) c(ψ) 0
0 0 1

�u� ……(20) 

 

By performing the multiplication of matrices of equation (20) 
as a function of the angles of yaw, pitch and roll, the aerospace 
rotation matrix with sequence (Z, Y, X) is obtained from an 
inertial reference frame for the aircraft. The rotation matrix is 
important for the resolution of the velocity and position 
equations. Using sequential rotation matrices, the angular 
velocity of the aircraft in its structure is related to the changes 
in angular rotation, thus making it possible to represent the 
state of the aircraft in flight in relation in relation to an inertial 
reference system. 

 
Moment of Inertia 
 
In order to qualify the project of quadrotors, with a broad 
approach of the involved variables (often disregarded), this 
study is presented contemplating the mathematical modeling 
of the moment of inertia. The moment of inertia relates the 
added rotational movement of translational motion, 
determining how the rotational velocity is affected by the 

application of torque. In the same direction this approach of 
quadrotors is conducted, with the range of the rotational 
movement of the propellers and the translational movement of 
the aircraft. For the rotational movement, it can be written that 
the sum of the applied forces (F) is related to mass (m) and 
linear acceleration (a), according to equation (21), while for 
the translational movement, the sum of the torques (�) is 
related to the moment of inertia (J) and the angular 
acceleration (�̇), corresponding to equation (22). 
 
∑� = ��                                          ………………………(21) 

 

∑� = ��̇                                            ………………………(22) 

 
For the design and study of objects with translational 
movement, as in the case of flight of quadrotor aircraft, it is of 
fundamental importance to determine the moment of inertia, 
providing control of the resulting torque in the aircraft 
reference axes, which results in flight and maneuverability of 
the same. The moment of inertia modeling depends on the 
mass of the object under analysis, in addition to how the mass 
is distributed around the axis of rotation. For objects with 
structure composed through multiple moments of inertia, 
represented by multiple geometries, it is necessary to 
determine the resulting inertial momentum matrix (J) in the 
reference axes X, Y and Z, that in the case of a system 
quadrotor is presented in equation (23). The inertial matrix 
describes the moment of inertia of the quadrotor in its 
respective axes, being directly related to the flight of the 
system. 
 

�� = 	 �

�� 0 0
0 �� 0
0 0 ��

�                              ……………………(23) 

 
In order to determine the inertia of the quadrotor system, it is 
assumed that there is a symmetry of the perfect structure 
around the X, Y and Z axes, in addition to considering a center 
of mass corresponding to the geometric center that joins the 
arms of the aircraft, forming thus a matrix of diagonal inertia. 
The formation of the diagonal matrix is related to the positions 
of X and Y of the quadrotor's arms (reference b) in relation to 
the inertial reference system (reference a), being conserved in 
both configurations of arms, the "+" and "X"(D. Hartman, K. 
Landis, M. Mehrer, S. Moreno, 2014). In order to structure the 
mathematical modeling of the inertia of the quadrotor, the 
following procedure will be carried out and the following 
considerations will be made: 

 

 The quadrotor is divided into fractional components 
according to their geometry (motors, speed 
controllers, central hub of the structure and support 
arms of the propellers), modeling each component as 
simplified geometric forms, with constant density; 

 The weight and spatial dimensions of each 
component are verified; 

 With the aid of the Parallel-Axis Theorem, the 
contribution of the moment of inertia of each 
component of the quadrotor is determined, observing 
the reference axes of the vehicle. In this step, each 
quadrotor component will result in a moment of 
inertia referenced to the X, Y and Z axes. 

 In order to determine the moment of inertia resulting 
from the aircraft, we add the inertia found for each 
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singular component in their respective axes 
(∑ �� , ∑ �� , ∑ ��). 

 
The Parallel Axis Theorem provides the moment of inertia 
through the center of masse of the component and the 
perpendicular distance between two parallel axes, allowing to 
model the inertia of the component in relation to the inertial 
referential of the vehicle. Thus, the inertia of each component 
of the aircraft in the reference axes (Jx, Jy, Jz) is determined and 
subsequently the inertia moment resulting from the system is 
determined by applying of studies the(D. Hartman, K. Landis, 
M. Mehrer, S. Moreno, 2014). The equation of the Parallel 
Axis Theorem can be written as: 

 

�������������� = ���� + ���                   ………………….(24) 

 

In equation (24) JCOM is the inertia of each fractional 
component of the aircraft in relation to a reference axis, being 
parallel to the axis that we wish to reference the inertia. In the 
same equation, "m" is the mass of the component and "d" is 
the perpendicular distance between the parallel axes (reference 
axis of the aircraft for which the inertia and axis where the 
component is positioned). It is observed that the orientation of 
the distance "d" can be disregarded, due to the quadratic 
elevation of the equation. 

 

Motors Inertia 

 
To determine the inertia of the motors (JM), their geometries 
will be simplified as solid cylinders, which will result in 
moments of inertia JxM, JyM and JzM, in their respective axes. 
The determination of the moment of inertia depends on the 
mass of the motor (m), the distance from the engine 
component to the reference center of the aircraft (dm), the 
height of the motor above the aircraft lift arms (h) and the 
radius of the motor (r). Two equations will be needed: from a 
cylinder rotating around its axis, equation (25) for the 
reference axes X and Y; and a cylinder rotating about its 
central axis, equation (26) with reference to the Z axis. 

 

���� = 	
�

�
��� +

�

�
�ℎ�                        ……………………(25) 

 

���� = 	
�

�
���                                      ……………………(26) 

 
The moment of inertia of the motors in the X and Y axis is 

the same, due to the symmetry of the system, writing equation 
(27): 

 

��,� = ��,� = 2 �
�

�
��� +

�

�
�ℎ�� + 2 �

�

�
��� +

�

�
�ℎ� +

���
��                                                    …………………..(27) 

 
For example, to determine Jx,M the first term in brackets in 
equation (27) represents the motors 1 and 3 that revolve 
around a diameter coincident with the X axis of the aircraft, in 
this case the distance from the term mdm

2 is zero, being 
omitted (parallel axis theorem). The second term in brackets 
represents motors 2 and 4, which has a rotational diameter 
parallel to the X axis of the aircraft, in this case there is the 
distance in the term mdm

2, the distance perpendicular between 
the axis of rotation of the motor and the reference axis of the 
aircraft. 

To determine inertia in the Z-axis (Jz,M), equation (26) is used 
which represents a cylinder rotating about its central axis. The 
four motors are rotating about the central axis, so that the axis 
of rotation of the motors is parallel to the Z axis, making valid 
the use of the term mdm

2, where the distance "d" is the 
perpendicular distance between the axis of rotation of the 
motors and the Z axis. In this way, the inertia of the motors in 
the Z axis can be written as (28). 

 

��,� = 4 �
�

�
��� + ���

��                    ................................(28) 

 
ESC’sInertia 

 
In order to determine the inertia of the electronic speed 
controllers ESC's (JS), analogous to that used in calculating the 
motors, their geometries will be simplified as flat plates, which 
will result in the moments of inertia JxS, JyS e JzS. The mass of 
an ESC is represented by (m), the distance from the ESC 
component to the reference center of the aircraft by (ds), the 
width of the ESC by (a) and the length of the ESC by (b). The 
equations of a flat plate rotating around the X, Y and Z axes, 
representing the ESC, can be written as: 

 

����,� =
�

��
���                             ……………………….(29) 

 

����,� =
�

��
���                              ………………………(30) 

 

����,� =
�

��
�(�� + ��)									……………………….(31) 

 
For the determination of the inertia of the ESC’s in the 
reference frame X, the components ESC’s 1 and 3 (with 
notation corresponding to the respective motors) are analyzed 
with axis of rotation coincident with the axis X of the aircraft, 
thus the term mds

2, is null by the parallel axis theorem. By 
analyzing the ESC’s components 2 and 4, with axis of rotation 
parallel to the X axis of the aircraft, the use of the term mds

2 is 
valid. Due to the symmetry of the vehicle on the X and Y axes, 
the inertial components Jx,S and Jy,S of the ESC's can be written 
as in (32): 

 

��,� = ��,� = 2 �
�

��
���� + 2 �

�

��
��� + ���

��   ………….(32) 

 
In order to determine inertia in the Z axis (Jz,S), the four ESC’s 
are rotating about an axis parallel to the Z axis of the aircraft 
and thus, in the term mds

2, the distance represents the 
displacement from the ESC to the Z axis of the aircraft. Thus, 
one can write (33) to represent the inertia Jz,S. 

 

��,� = 4 �
�

��
�(�� + ��) + ���

��                       …………..(33) 

 
Central Hub Inertia: The four propellers of the quadrotor are 
each supported by their respective arms, these arms being 
connected a central hub, thus defining a moment of inertia of 
the central hub (JH). The central hub provides physical support 
for propeller arms and support for onboard electronics, its 
geometry being simplified by a solid cylinder with moments of 
inertia Jx,H, Jy,H, Jz,H. In the central hub representation of the 
structure, its mass is defined as (m), the radius of the central 
union by (r) and the height of the central union by (H). The 
inertia of the central hub component can be determined by 
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equation (34) for the X and Y axes, in addition to equation 
(35) for the Z axis. The determination of the inertia ��,� is 
performed considering the rotation around a central diameter 
coincident with the X axis of the aircraft, then the distance 
component relative to the Parallel Axis Theorem is zero, being 
null. Because of the symmetry of the aircraft, ��,� has the same 

representation of��,�, resulting in equation (34). 
 

��,� = ��,� = �
�

�
��� +

�

��
����           …………………...(34) 

  
The determination of inertia in the Z axis is performed by the 
representation of a cylinder rotating about the central axis, 
which coincides with the Z axis of the aircraft, indicating that 
the distance component of the Parallel Axis Theorem is zero. 
In this way, the inertia component of this axis is represented by 
equation (35). 

 

��,� = �
�

�
����                                      …………………….(35) 

 

Arms Inertia 

For the determination of the inertia of the propellers' arms (��), 
their geometries will be simplified by solid cylinders, defined 
in the reference axes as��,�, ��,� e ��,�. The propeller support 

arms are described as a function of the total length of one of 
the arms, represented by (L), the radius of the cylinder 
representing the arm (r) and the mass of one of the arms (m). 
The equation of the inertia of the arms in the X and Y 
reference frames is shown in (36), while the inertia of the Z 
component is dependent on (37). 

 

���� = 	
�

�
���                                        ...…………………(36) 

 

���� = 	
�

�
��� +

�

�
���                           …………………..(37) 

  

For the determination of the inertia in the X-axis (��,�), the 
representative cylinder is rotating about a central axis and also 
around its diameter, resulting in the combination presented in 
equation (38). 

 

��,� = ��,� = 2 �
�

�
���� + 2 �

�

�
��� +

�

�
��� + ���

�� …...(38) 

 

The first term in the brackets of equation (38) is representative 
for the arms 1 and 3, which are rotating about a central axis, 
coincident with the X axis of the aircraft. Thus, the distance 
term observed for the Parallel Axis Theorem is zero. The 
second bracket in the equation is for the arms 2 and 4, which 
are rotated around a diameter located from a distance “da” 
from the X axis of the aircraft. Thus, the Parallel Axis 

Theorem is represented by the term ���
�. It is observed that 

due to the symmetry of the aircraft, the inertia in X and Y must 
be the same. The inertia of the arms in the reference frame Z 
(��,�), is given in equation (39). It is considered a cylinder 
rotating around the diameter, located at a distance “��” from 
the Z axis of the aircraft and thus, in the parallel axis theorem, 

the terminology ���
� is valid. 

  

��,� = 4 �
�

�
��� +

�

�
��� + ���

��           ………………….(39) 

Because the aircraft is symmetrical and consists of four arms, 
the product four times is justified by the representation of each 
arm. 

 

Quadrotor Resultant Inertia 
 
The Parallel Axes Theorem, allowing the modeling of the 
moment of inertia of each quadrotor component in relation to 
the referential inertial of the vehicle. Thus, it is determinate the 
inertia of each component of the aircraft (motor, ESC, central 
hub and arms) in the reference axes and is the moment of 
inertia resulting from the system. In this way, the moment of 
inertia of the quadrotor can be represented in its respective 
axes as: 

 

�� = ∑ �� = ��,� + ��,� + ��,� + ��,�          ……………….(40) 

 

�� = ∑ �� = ��,� + ��,� + ��,� + ��,�          ……………….(41) 

 

�� = ∑ �� = ��,� + ��,� + ��,� + ��,�            ………………(42) 

 
Once the inertial values have been determined by reference 
axes, the quadrotor can be written as inertial matrix, as 
previously described in equation (23). With the inertia matrix, 
it is possible to carry out simulations of the state of the 
quadrotor and its relation with the moment of inertia. For this, 
we used the equations (21) and (22) that were added to the 
mathematical model of the quadrotor, implemented in 
Matlab/Simulink with the robotic toolbox developed by(Corke, 
2013). 

 

RESULTS 
 
The results were obtained by application implemented through 
the Matlab/Simulink tool with an educational license for 
students, using as reference the robotic toolbox developed 
by(Corke, 2013), available for free in(Corke, 2018), enabling 
agility in the computational implementation process and 
flexibility of specific parameterizations. The tenth edition of 
the toolbox represents more than twenty years of development 
and an extensive level of maturity, providing many functions 
that are useful for the study and simulation of classical 
robotics, including kinematics, dynamics and trajectory 
generation(Corke, 2018). In the last version of the toolbox, a 
detailed Simulink model of a quadrotor is available, which 
makes the mathematical equation discussed in this study 
possible. The model is structured in blocks, initially presenting 
the entries of the desired position for the aircraft in the roll, 
pitch and yaw axes, in addition to the flight height. The 
attitude control of the aircraft can be accessed through the 
respective blocks that originate the torques in the reference 
axes (X, Y, Z), in addition to the total thrust control block, 
which is related to height control. The torques and thrust are 
worked out in terms of the speed of the rotors, forming an 
output matrix that is plotted with the animation of a quadrotor 
in flight, allowing to identify the dynamics of the system 
following its entrances. With the configuration of the model, it 
is possible to carry out several implementations. Once the 
toolbox has been installed, the initial parameters (including the 
moment of inertia of the quadrotor) must be loaded by means 
of the "mdl_quadrotor" command in the Matlab command 
window. Afterwards, it is possible to open the Simulink model 
through the "sl_quadrotor" command.  
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With the model open, it is possible to carry out the input 
configurations and check the desired outputs. A data output 
file is created during the execution of the model allowing the 
ex-trapping of output data corresponding to an initial 
parameterization. The output data is available in the "result" 
file, which can be accessed in the Matlab command window. 
This data available in the output file represents position, 
orientation, velocity, and orientation rate. The output matrix of 
the system consists of 16 columns, which can be verified by 
the "about (result)" command, structured in the form of a row 
by time step, where each row contains a state vector, where the 
elements 1-12 represent (x, y, z, yaw, pitch, roll, dx, dy, dz, 
dyaw, dpitch, droll), while rotor speeds are represented by 
elements 13-16 (ω1, ω2, ω3, ω4), respectively. The quantities 
are represented according to the units of the International 
System (SI).For the configuration of inputs and inertia 
performed, it is possible to verify some of the results that can 
be obtained through the model, which are presented in Figures 
3. The results make it possible to verify the behavior of the 
quadrotor as a function of a predefined input, demonstrating 
that the model used has stability and represents the dynamics 
of the system. 

 

DISCUSSION 
 
The mathematical modeling of the dynamics of the system is 
fundamental for the design of quadrotors, being an 
indispensable item for the scientific research in the area, 
representing the gateway for new researchers, as well as the 
reference for the improvement and qualification of the 
researches. The understanding of the magnitudes involved, 
their action and interaction allow to define the maneuverability 
of the aircraft, as well as to design this capacity. The control of 
the quadrotor in one direction can only be done by isolating 
the mathematical model of torques in the reference axes, but 
for maneuverability it must be considered in conjunction with 
the axes, besides the resulting summation thrust. The 
complexity of the dynamics involved in the system 
demonstrates that mathematical modeling is a good solution 
for the design of quadrotors. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The structured organization of the mathematical model of the 
quadrotor leads to an understanding of the dynamics involved 
in the system, as well as to demonstrate the degree of maturity 
of the research. The control strategies are significant fields of 
investigation, which can be subsidized through the presented 
implementation, as well as investigations of aircraft with the 
alteration of characteristics, verification of limitations and 
possible solutions, as well as the promotion of new structures 
research. 
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Figure 3. (a) Angular orientation of the quadrotor in the axes X, Y, Z. (b)Motors velocity of quadrotor 
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